Step |
Hyp |
Ref |
Expression |
1 |
|
fdc1.1 |
|
2 |
|
fdc1.2 |
|
3 |
|
fdc1.3 |
|
4 |
|
fdc1.4 |
|
5 |
|
fdc1.5 |
|
6 |
|
fdc1.6 |
|
7 |
|
fdc1.7 |
|
8 |
|
fdc1.8 |
|
9 |
|
fdc1.9 |
|
10 |
|
fdc1.10 |
|
11 |
|
fdc1.11 |
|
12 |
|
fdc1.12 |
|
13 |
|
eleq1w |
|
14 |
13
|
anbi2d |
|
15 |
|
sbceq2a |
|
16 |
14 15
|
anbi12d |
|
17 |
16
|
imbi1d |
|
18 |
|
sbsbc |
|
19 |
|
nfv |
|
20 |
19 6
|
sbhypf |
|
21 |
18 20
|
bitr3id |
|
22 |
|
sbsbc |
|
23 |
|
nfv |
|
24 |
23 8
|
sbhypf |
|
25 |
22 24
|
bitr3id |
|
26 |
|
simprl |
|
27 |
10
|
adantr |
|
28 |
|
nfv |
|
29 |
|
nfsbc1v |
|
30 |
|
nfcv |
|
31 |
|
nfsbc1v |
|
32 |
30 31
|
nfrex |
|
33 |
29 32
|
nfor |
|
34 |
28 33
|
nfim |
|
35 |
|
eleq1w |
|
36 |
35
|
anbi2d |
|
37 |
|
sbceq1a |
|
38 |
|
sbceq1a |
|
39 |
38
|
rexbidv |
|
40 |
37 39
|
orbi12d |
|
41 |
36 40
|
imbi12d |
|
42 |
34 41 11
|
chvarfv |
|
43 |
42
|
adantlr |
|
44 |
|
nfv |
|
45 |
44 31
|
nfan |
|
46 |
|
nfv |
|
47 |
45 46
|
nfan |
|
48 |
|
nfv |
|
49 |
47 48
|
nfim |
|
50 |
38
|
anbi2d |
|
51 |
35
|
anbi1d |
|
52 |
50 51
|
anbi12d |
|
53 |
|
breq2 |
|
54 |
52 53
|
imbi12d |
|
55 |
49 54 12
|
chvarfv |
|
56 |
55
|
adantllr |
|
57 |
1 2 3 4 21 7 25 26 27 43 56
|
fdc |
|
58 |
57
|
anassrs |
|
59 |
|
idd |
|
60 |
|
dfsbcq |
|
61 |
|
fvex |
|
62 |
61 5
|
sbcie |
|
63 |
60 62
|
bitr3di |
|
64 |
63
|
biimpcd |
|
65 |
64
|
adantl |
|
66 |
65
|
anim1d |
|
67 |
|
idd |
|
68 |
59 66 67
|
3anim123d |
|
69 |
68
|
eximdv |
|
70 |
69
|
reximdv |
|
71 |
58 70
|
mpd |
|
72 |
17 71
|
chvarvv |
|
73 |
72 9
|
r19.29a |
|