Metamath Proof Explorer


Theorem seqpo

Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion seqpo R Po A F : A s F s R F s + 1 m n m + 1 F m R F n

Proof

Step Hyp Ref Expression
1 fveq2 p = m + 1 F p = F m + 1
2 1 breq2d p = m + 1 F m R F p F m R F m + 1
3 2 imbi2d p = m + 1 R Po A F : A s F s R F s + 1 m F m R F p R Po A F : A s F s R F s + 1 m F m R F m + 1
4 fveq2 p = q F p = F q
5 4 breq2d p = q F m R F p F m R F q
6 5 imbi2d p = q R Po A F : A s F s R F s + 1 m F m R F p R Po A F : A s F s R F s + 1 m F m R F q
7 fveq2 p = q + 1 F p = F q + 1
8 7 breq2d p = q + 1 F m R F p F m R F q + 1
9 8 imbi2d p = q + 1 R Po A F : A s F s R F s + 1 m F m R F p R Po A F : A s F s R F s + 1 m F m R F q + 1
10 fveq2 p = n F p = F n
11 10 breq2d p = n F m R F p F m R F n
12 11 imbi2d p = n R Po A F : A s F s R F s + 1 m F m R F p R Po A F : A s F s R F s + 1 m F m R F n
13 fveq2 s = m F s = F m
14 fvoveq1 s = m F s + 1 = F m + 1
15 13 14 breq12d s = m F s R F s + 1 F m R F m + 1
16 15 rspccva s F s R F s + 1 m F m R F m + 1
17 16 adantl R Po A F : A s F s R F s + 1 m F m R F m + 1
18 17 a1i m + 1 R Po A F : A s F s R F s + 1 m F m R F m + 1
19 peano2nn m m + 1
20 elnnuz m + 1 m + 1 1
21 19 20 sylib m m + 1 1
22 uztrn q m + 1 m + 1 1 q 1
23 elnnuz q q 1
24 22 23 sylibr q m + 1 m + 1 1 q
25 24 expcom m + 1 1 q m + 1 q
26 21 25 syl m q m + 1 q
27 26 imdistani m q m + 1 m q
28 fveq2 s = q F s = F q
29 fvoveq1 s = q F s + 1 = F q + 1
30 28 29 breq12d s = q F s R F s + 1 F q R F q + 1
31 30 rspccva s F s R F s + 1 q F q R F q + 1
32 31 ad2ant2l R Po A F : A s F s R F s + 1 m q F q R F q + 1
33 32 ex R Po A F : A s F s R F s + 1 m q F q R F q + 1
34 ffvelrn F : A m F m A
35 34 adantrr F : A m q F m A
36 ffvelrn F : A q F q A
37 36 adantrl F : A m q F q A
38 peano2nn q q + 1
39 ffvelrn F : A q + 1 F q + 1 A
40 38 39 sylan2 F : A q F q + 1 A
41 40 adantrl F : A m q F q + 1 A
42 35 37 41 3jca F : A m q F m A F q A F q + 1 A
43 potr R Po A F m A F q A F q + 1 A F m R F q F q R F q + 1 F m R F q + 1
44 43 expcomd R Po A F m A F q A F q + 1 A F q R F q + 1 F m R F q F m R F q + 1
45 44 ex R Po A F m A F q A F q + 1 A F q R F q + 1 F m R F q F m R F q + 1
46 42 45 syl5 R Po A F : A m q F q R F q + 1 F m R F q F m R F q + 1
47 46 expdimp R Po A F : A m q F q R F q + 1 F m R F q F m R F q + 1
48 47 adantr R Po A F : A s F s R F s + 1 m q F q R F q + 1 F m R F q F m R F q + 1
49 33 48 mpdd R Po A F : A s F s R F s + 1 m q F m R F q F m R F q + 1
50 27 49 syl5 R Po A F : A s F s R F s + 1 m q m + 1 F m R F q F m R F q + 1
51 50 expdimp R Po A F : A s F s R F s + 1 m q m + 1 F m R F q F m R F q + 1
52 51 anasss R Po A F : A s F s R F s + 1 m q m + 1 F m R F q F m R F q + 1
53 52 com12 q m + 1 R Po A F : A s F s R F s + 1 m F m R F q F m R F q + 1
54 53 a2d q m + 1 R Po A F : A s F s R F s + 1 m F m R F q R Po A F : A s F s R F s + 1 m F m R F q + 1
55 3 6 9 12 18 54 uzind4 n m + 1 R Po A F : A s F s R F s + 1 m F m R F n
56 55 com12 R Po A F : A s F s R F s + 1 m n m + 1 F m R F n
57 56 ralrimiv R Po A F : A s F s R F s + 1 m n m + 1 F m R F n
58 57 anassrs R Po A F : A s F s R F s + 1 m n m + 1 F m R F n
59 58 ralrimiva R Po A F : A s F s R F s + 1 m n m + 1 F m R F n
60 59 ex R Po A F : A s F s R F s + 1 m n m + 1 F m R F n
61 fvoveq1 m = s m + 1 = s + 1
62 fveq2 m = s F m = F s
63 62 breq1d m = s F m R F n F s R F n
64 61 63 raleqbidv m = s n m + 1 F m R F n n s + 1 F s R F n
65 64 rspcv s m n m + 1 F m R F n n s + 1 F s R F n
66 65 imdistanri m n m + 1 F m R F n s n s + 1 F s R F n s
67 peano2nn s s + 1
68 67 nnzd s s + 1
69 uzid s + 1 s + 1 s + 1
70 68 69 syl s s + 1 s + 1
71 fveq2 n = s + 1 F n = F s + 1
72 71 breq2d n = s + 1 F s R F n F s R F s + 1
73 72 rspccva n s + 1 F s R F n s + 1 s + 1 F s R F s + 1
74 70 73 sylan2 n s + 1 F s R F n s F s R F s + 1
75 66 74 syl m n m + 1 F m R F n s F s R F s + 1
76 75 ralrimiva m n m + 1 F m R F n s F s R F s + 1
77 60 76 impbid1 R Po A F : A s F s R F s + 1 m n m + 1 F m R F n