| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
1
|
breq2d |
|
| 3 |
2
|
imbi2d |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
breq2d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
breq2d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
breq2d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
fvoveq1 |
|
| 15 |
13 14
|
breq12d |
|
| 16 |
15
|
rspccva |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
a1i |
|
| 19 |
|
peano2nn |
|
| 20 |
|
elnnuz |
|
| 21 |
19 20
|
sylib |
|
| 22 |
|
uztrn |
|
| 23 |
|
elnnuz |
|
| 24 |
22 23
|
sylibr |
|
| 25 |
24
|
expcom |
|
| 26 |
21 25
|
syl |
|
| 27 |
26
|
imdistani |
|
| 28 |
|
fveq2 |
|
| 29 |
|
fvoveq1 |
|
| 30 |
28 29
|
breq12d |
|
| 31 |
30
|
rspccva |
|
| 32 |
31
|
ad2ant2l |
|
| 33 |
32
|
ex |
|
| 34 |
|
ffvelcdm |
|
| 35 |
34
|
adantrr |
|
| 36 |
|
ffvelcdm |
|
| 37 |
36
|
adantrl |
|
| 38 |
|
peano2nn |
|
| 39 |
|
ffvelcdm |
|
| 40 |
38 39
|
sylan2 |
|
| 41 |
40
|
adantrl |
|
| 42 |
35 37 41
|
3jca |
|
| 43 |
|
potr |
|
| 44 |
43
|
expcomd |
|
| 45 |
44
|
ex |
|
| 46 |
42 45
|
syl5 |
|
| 47 |
46
|
expdimp |
|
| 48 |
47
|
adantr |
|
| 49 |
33 48
|
mpdd |
|
| 50 |
27 49
|
syl5 |
|
| 51 |
50
|
expdimp |
|
| 52 |
51
|
anasss |
|
| 53 |
52
|
com12 |
|
| 54 |
53
|
a2d |
|
| 55 |
3 6 9 12 18 54
|
uzind4 |
|
| 56 |
55
|
com12 |
|
| 57 |
56
|
ralrimiv |
|
| 58 |
57
|
anassrs |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
59
|
ex |
|
| 61 |
|
fvoveq1 |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
breq1d |
|
| 64 |
61 63
|
raleqbidv |
|
| 65 |
64
|
rspcv |
|
| 66 |
65
|
imdistanri |
|
| 67 |
|
peano2nn |
|
| 68 |
67
|
nnzd |
|
| 69 |
|
uzid |
|
| 70 |
68 69
|
syl |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
breq2d |
|
| 73 |
72
|
rspccva |
|
| 74 |
70 73
|
sylan2 |
|
| 75 |
66 74
|
syl |
|
| 76 |
75
|
ralrimiva |
|
| 77 |
60 76
|
impbid1 |
|