Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
1
|
eleq2d |
|
3 |
2
|
rexbidv |
|
4 |
3
|
imbi2d |
|
5 |
|
fveq2 |
|
6 |
5
|
eleq2d |
|
7 |
6
|
rexbidv |
|
8 |
7
|
imbi2d |
|
9 |
|
fveq2 |
|
10 |
9
|
eleq2d |
|
11 |
10
|
rexbidv |
|
12 |
11
|
imbi2d |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq2d |
|
15 |
14
|
rexbidv |
|
16 |
15
|
imbi2d |
|
17 |
|
1nn |
|
18 |
17
|
ne0ii |
|
19 |
|
ffvelrn |
|
20 |
|
elnnuz |
|
21 |
19 20
|
sylib |
|
22 |
21
|
ralrimiva |
|
23 |
|
r19.2z |
|
24 |
18 22 23
|
sylancr |
|
25 |
24
|
adantr |
|
26 |
|
peano2nn |
|
27 |
26
|
adantl |
|
28 |
|
nnre |
|
29 |
28
|
ad2antrr |
|
30 |
19
|
nnred |
|
31 |
30
|
adantlr |
|
32 |
31
|
adantll |
|
33 |
|
1red |
|
34 |
29 32 33
|
leadd1d |
|
35 |
|
fveq2 |
|
36 |
|
fvoveq1 |
|
37 |
35 36
|
breq12d |
|
38 |
37
|
rspcv |
|
39 |
38
|
imdistani |
|
40 |
|
ffvelrn |
|
41 |
26 40
|
sylan2 |
|
42 |
|
nnltp1le |
|
43 |
19 41 42
|
syl2anc |
|
44 |
43
|
biimpa |
|
45 |
44
|
anasss |
|
46 |
39 45
|
sylan2 |
|
47 |
46
|
anass1rs |
|
48 |
47
|
adantll |
|
49 |
|
peano2re |
|
50 |
28 49
|
syl |
|
51 |
50
|
ad2antrr |
|
52 |
|
peano2nn |
|
53 |
19 52
|
syl |
|
54 |
53
|
nnred |
|
55 |
54
|
adantll |
|
56 |
40
|
nnred |
|
57 |
26 56
|
sylan2 |
|
58 |
57
|
adantll |
|
59 |
|
letr |
|
60 |
51 55 58 59
|
syl3anc |
|
61 |
60
|
adantlrr |
|
62 |
48 61
|
mpan2d |
|
63 |
34 62
|
sylbid |
|
64 |
|
nnz |
|
65 |
19
|
nnzd |
|
66 |
|
eluz |
|
67 |
64 65 66
|
syl2an |
|
68 |
67
|
adantrlr |
|
69 |
68
|
anassrs |
|
70 |
64
|
peano2zd |
|
71 |
40
|
nnzd |
|
72 |
26 71
|
sylan2 |
|
73 |
|
eluz |
|
74 |
70 72 73
|
syl2an |
|
75 |
74
|
adantrlr |
|
76 |
75
|
anassrs |
|
77 |
63 69 76
|
3imtr4d |
|
78 |
|
fveq2 |
|
79 |
78
|
eleq1d |
|
80 |
79
|
rspcev |
|
81 |
27 77 80
|
syl6an |
|
82 |
81
|
rexlimdva |
|
83 |
|
fveq2 |
|
84 |
83
|
eleq1d |
|
85 |
84
|
cbvrexvw |
|
86 |
82 85
|
syl6ib |
|
87 |
86
|
ex |
|
88 |
87
|
a2d |
|
89 |
4 8 12 16 25 88
|
nnind |
|
90 |
89
|
com12 |
|
91 |
90
|
3impia |
|