Metamath Proof Explorer


Theorem incsequz

Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion incsequz F : m F m < F m + 1 A n F n A

Proof

Step Hyp Ref Expression
1 fveq2 p = 1 p = 1
2 1 eleq2d p = 1 F n p F n 1
3 2 rexbidv p = 1 n F n p n F n 1
4 3 imbi2d p = 1 F : m F m < F m + 1 n F n p F : m F m < F m + 1 n F n 1
5 fveq2 p = q p = q
6 5 eleq2d p = q F n p F n q
7 6 rexbidv p = q n F n p n F n q
8 7 imbi2d p = q F : m F m < F m + 1 n F n p F : m F m < F m + 1 n F n q
9 fveq2 p = q + 1 p = q + 1
10 9 eleq2d p = q + 1 F n p F n q + 1
11 10 rexbidv p = q + 1 n F n p n F n q + 1
12 11 imbi2d p = q + 1 F : m F m < F m + 1 n F n p F : m F m < F m + 1 n F n q + 1
13 fveq2 p = A p = A
14 13 eleq2d p = A F n p F n A
15 14 rexbidv p = A n F n p n F n A
16 15 imbi2d p = A F : m F m < F m + 1 n F n p F : m F m < F m + 1 n F n A
17 1nn 1
18 17 ne0ii
19 ffvelrn F : n F n
20 elnnuz F n F n 1
21 19 20 sylib F : n F n 1
22 21 ralrimiva F : n F n 1
23 r19.2z n F n 1 n F n 1
24 18 22 23 sylancr F : n F n 1
25 24 adantr F : m F m < F m + 1 n F n 1
26 peano2nn n n + 1
27 26 adantl q F : m F m < F m + 1 n n + 1
28 nnre q q
29 28 ad2antrr q F : m F m < F m + 1 n q
30 19 nnred F : n F n
31 30 adantlr F : m F m < F m + 1 n F n
32 31 adantll q F : m F m < F m + 1 n F n
33 1red q F : m F m < F m + 1 n 1
34 29 32 33 leadd1d q F : m F m < F m + 1 n q F n q + 1 F n + 1
35 fveq2 m = n F m = F n
36 fvoveq1 m = n F m + 1 = F n + 1
37 35 36 breq12d m = n F m < F m + 1 F n < F n + 1
38 37 rspcv n m F m < F m + 1 F n < F n + 1
39 38 imdistani n m F m < F m + 1 n F n < F n + 1
40 ffvelrn F : n + 1 F n + 1
41 26 40 sylan2 F : n F n + 1
42 nnltp1le F n F n + 1 F n < F n + 1 F n + 1 F n + 1
43 19 41 42 syl2anc F : n F n < F n + 1 F n + 1 F n + 1
44 43 biimpa F : n F n < F n + 1 F n + 1 F n + 1
45 44 anasss F : n F n < F n + 1 F n + 1 F n + 1
46 39 45 sylan2 F : n m F m < F m + 1 F n + 1 F n + 1
47 46 anass1rs F : m F m < F m + 1 n F n + 1 F n + 1
48 47 adantll q F : m F m < F m + 1 n F n + 1 F n + 1
49 peano2re q q + 1
50 28 49 syl q q + 1
51 50 ad2antrr q F : n q + 1
52 peano2nn F n F n + 1
53 19 52 syl F : n F n + 1
54 53 nnred F : n F n + 1
55 54 adantll q F : n F n + 1
56 40 nnred F : n + 1 F n + 1
57 26 56 sylan2 F : n F n + 1
58 57 adantll q F : n F n + 1
59 letr q + 1 F n + 1 F n + 1 q + 1 F n + 1 F n + 1 F n + 1 q + 1 F n + 1
60 51 55 58 59 syl3anc q F : n q + 1 F n + 1 F n + 1 F n + 1 q + 1 F n + 1
61 60 adantlrr q F : m F m < F m + 1 n q + 1 F n + 1 F n + 1 F n + 1 q + 1 F n + 1
62 48 61 mpan2d q F : m F m < F m + 1 n q + 1 F n + 1 q + 1 F n + 1
63 34 62 sylbid q F : m F m < F m + 1 n q F n q + 1 F n + 1
64 nnz q q
65 19 nnzd F : n F n
66 eluz q F n F n q q F n
67 64 65 66 syl2an q F : n F n q q F n
68 67 adantrlr q F : m F m < F m + 1 n F n q q F n
69 68 anassrs q F : m F m < F m + 1 n F n q q F n
70 64 peano2zd q q + 1
71 40 nnzd F : n + 1 F n + 1
72 26 71 sylan2 F : n F n + 1
73 eluz q + 1 F n + 1 F n + 1 q + 1 q + 1 F n + 1
74 70 72 73 syl2an q F : n F n + 1 q + 1 q + 1 F n + 1
75 74 adantrlr q F : m F m < F m + 1 n F n + 1 q + 1 q + 1 F n + 1
76 75 anassrs q F : m F m < F m + 1 n F n + 1 q + 1 q + 1 F n + 1
77 63 69 76 3imtr4d q F : m F m < F m + 1 n F n q F n + 1 q + 1
78 fveq2 k = n + 1 F k = F n + 1
79 78 eleq1d k = n + 1 F k q + 1 F n + 1 q + 1
80 79 rspcev n + 1 F n + 1 q + 1 k F k q + 1
81 27 77 80 syl6an q F : m F m < F m + 1 n F n q k F k q + 1
82 81 rexlimdva q F : m F m < F m + 1 n F n q k F k q + 1
83 fveq2 k = n F k = F n
84 83 eleq1d k = n F k q + 1 F n q + 1
85 84 cbvrexvw k F k q + 1 n F n q + 1
86 82 85 syl6ib q F : m F m < F m + 1 n F n q n F n q + 1
87 86 ex q F : m F m < F m + 1 n F n q n F n q + 1
88 87 a2d q F : m F m < F m + 1 n F n q F : m F m < F m + 1 n F n q + 1
89 4 8 12 16 25 88 nnind A F : m F m < F m + 1 n F n A
90 89 com12 F : m F m < F m + 1 A n F n A
91 90 3impia F : m F m < F m + 1 A n F n A