| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 1 ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝑝 = 1 → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 3 |
2
|
rexbidv |
⊢ ( 𝑝 = 1 → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑝 = 1 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 𝑞 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑝 = 𝑞 → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑝 = 𝐴 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 𝐴 ) ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
| 15 |
14
|
rexbidv |
⊢ ( 𝑝 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑝 = 𝐴 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) ) |
| 17 |
|
1nn |
⊢ 1 ∈ ℕ |
| 18 |
17
|
ne0ii |
⊢ ℕ ≠ ∅ |
| 19 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℕ ) |
| 20 |
|
elnnuz |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ℕ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 23 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 24 |
18 22 23
|
sylancr |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 28 |
|
nnre |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℝ ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑞 ∈ ℝ ) |
| 30 |
19
|
nnred |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 32 |
31
|
adantll |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 33 |
|
1red |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ ) |
| 34 |
29 32 33
|
leadd1d |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑞 + 1 ) ≤ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 36 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 37 |
35 36
|
breq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 38 |
37
|
rspcv |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 39 |
38
|
imdistani |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 40 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 41 |
26 40
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 42 |
|
nnltp1le |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 43 |
19 41 42
|
syl2anc |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 45 |
44
|
anasss |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 46 |
39 45
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 47 |
46
|
anass1rs |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 48 |
47
|
adantll |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 49 |
|
peano2re |
⊢ ( 𝑞 ∈ ℝ → ( 𝑞 + 1 ) ∈ ℝ ) |
| 50 |
28 49
|
syl |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 + 1 ) ∈ ℝ ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 + 1 ) ∈ ℝ ) |
| 52 |
|
peano2nn |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ℕ → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∈ ℕ ) |
| 53 |
19 52
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∈ ℕ ) |
| 54 |
53
|
nnred |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
| 55 |
54
|
adantll |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
| 56 |
40
|
nnred |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 57 |
26 56
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 58 |
57
|
adantll |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 59 |
|
letr |
⊢ ( ( ( 𝑞 + 1 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∧ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 60 |
51 55 58 59
|
syl3anc |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∧ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 61 |
60
|
adantlrr |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ∧ ( ( 𝐹 ‘ 𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 62 |
48 61
|
mpan2d |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑞 + 1 ) ≤ ( ( 𝐹 ‘ 𝑛 ) + 1 ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 63 |
34 62
|
sylbid |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 64 |
|
nnz |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℤ ) |
| 65 |
19
|
nnzd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℤ ) |
| 66 |
|
eluz |
⊢ ( ( 𝑞 ∈ ℤ ∧ ( 𝐹 ‘ 𝑛 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ↔ 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 67 |
64 65 66
|
syl2an |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ↔ 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 68 |
67
|
adantrlr |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ↔ 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 69 |
68
|
anassrs |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ↔ 𝑞 ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 70 |
64
|
peano2zd |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 + 1 ) ∈ ℤ ) |
| 71 |
40
|
nnzd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 72 |
26 71
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 73 |
|
eluz |
⊢ ( ( ( 𝑞 + 1 ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 74 |
70 72 73
|
syl2an |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 75 |
74
|
adantrlr |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 76 |
75
|
anassrs |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 77 |
63 69 76
|
3imtr4d |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 78 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 79 |
78
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 80 |
79
|
rspcev |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) → ∃ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) |
| 81 |
27 77 80
|
syl6an |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) → ∃ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 82 |
81
|
rexlimdva |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) → ∃ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 83 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 84 |
83
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 85 |
84
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) |
| 86 |
82 85
|
imbitrdi |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) |
| 87 |
86
|
ex |
⊢ ( 𝑞 ∈ ℕ → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) ) |
| 88 |
87
|
a2d |
⊢ ( 𝑞 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝑞 + 1 ) ) ) ) ) |
| 89 |
4 8 12 16 25 88
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
| 90 |
89
|
com12 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝐴 ∈ ℕ → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
| 91 |
90
|
3impia |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |