| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑝  =  1  →  ( ℤ≥ ‘ 𝑝 )  =  ( ℤ≥ ‘ 1 ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑝  =  1  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) ) | 
						
							| 3 | 2 | rexbidv | ⊢ ( 𝑝  =  1  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑝  =  1  →  ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 ) )  ↔  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( ℤ≥ ‘ 𝑝 )  =  ( ℤ≥ ‘ 𝑞 ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑝  =  𝑞  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 ) )  ↔  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ℤ≥ ‘ 𝑝 )  =  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 ) )  ↔  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑝  =  𝐴  →  ( ℤ≥ ‘ 𝑝 )  =  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑝  =  𝐴  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑝  =  𝐴  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 )  ↔  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑝  =  𝐴  →  ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑝 ) )  ↔  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) ) | 
						
							| 17 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 18 | 17 | ne0ii | ⊢ ℕ  ≠  ∅ | 
						
							| 19 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 20 |  | elnnuz | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ℕ  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 23 |  | r19.2z | ⊢ ( ( ℕ  ≠  ∅  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 24 | 18 22 23 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 26 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 28 |  | nnre | ⊢ ( 𝑞  ∈  ℕ  →  𝑞  ∈  ℝ ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑞  ∈  ℝ ) | 
						
							| 30 | 19 | nnred | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 32 | 31 | adantll | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 33 |  | 1red | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 34 | 29 32 33 | leadd1d | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  ≤  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝑞  +  1 )  ≤  ( ( 𝐹 ‘ 𝑛 )  +  1 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 36 |  | fvoveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ ( 𝑚  +  1 ) )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 37 | 35 36 | breq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ↔  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 38 | 37 | rspcv | ⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 39 | 38 | imdistani | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ( 𝑛  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 40 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 41 | 26 40 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 42 |  | nnltp1le | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℕ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ↔  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 43 | 19 41 42 | syl2anc | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ↔  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 45 | 44 | anasss | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 46 | 39 45 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 47 | 46 | anass1rs | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 48 | 47 | adantll | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 49 |  | peano2re | ⊢ ( 𝑞  ∈  ℝ  →  ( 𝑞  +  1 )  ∈  ℝ ) | 
						
							| 50 | 28 49 | syl | ⊢ ( 𝑞  ∈  ℕ  →  ( 𝑞  +  1 )  ∈  ℝ ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  +  1 )  ∈  ℝ ) | 
						
							| 52 |  | peano2nn | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 53 | 19 52 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 54 | 53 | nnred | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∈  ℝ ) | 
						
							| 55 | 54 | adantll | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∈  ℝ ) | 
						
							| 56 | 40 | nnred | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 57 | 26 56 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 58 | 57 | adantll | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 59 |  | letr | ⊢ ( ( ( 𝑞  +  1 )  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∈  ℝ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ )  →  ( ( ( 𝑞  +  1 )  ≤  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∧  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 60 | 51 55 58 59 | syl3anc | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑞  +  1 )  ≤  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∧  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 61 | 60 | adantlrr | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑞  +  1 )  ≤  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ∧  ( ( 𝐹 ‘ 𝑛 )  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 62 | 48 61 | mpan2d | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑞  +  1 )  ≤  ( ( 𝐹 ‘ 𝑛 )  +  1 )  →  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 63 | 34 62 | sylbid | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  ≤  ( 𝐹 ‘ 𝑛 )  →  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 64 |  | nnz | ⊢ ( 𝑞  ∈  ℕ  →  𝑞  ∈  ℤ ) | 
						
							| 65 | 19 | nnzd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 66 |  | eluz | ⊢ ( ( 𝑞  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑛 )  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  ↔  𝑞  ≤  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 67 | 64 65 66 | syl2an | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  ↔  𝑞  ≤  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 68 | 67 | adantrlr | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  ↔  𝑞  ≤  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 69 | 68 | anassrs | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  ↔  𝑞  ≤  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 70 | 64 | peano2zd | ⊢ ( 𝑞  ∈  ℕ  →  ( 𝑞  +  1 )  ∈  ℤ ) | 
						
							| 71 | 40 | nnzd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 72 | 26 71 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 73 |  | eluz | ⊢ ( ( ( 𝑞  +  1 )  ∈  ℤ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℤ )  →  ( ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 74 | 70 72 73 | syl2an | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 75 | 74 | adantrlr | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 76 | 75 | anassrs | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝑞  +  1 )  ≤  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 77 | 63 69 76 | 3imtr4d | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 79 | 78 | eleq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 80 | 79 | rspcev | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) )  →  ∃ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 81 | 27 77 80 | syl6an | ⊢ ( ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  →  ∃ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 82 | 81 | rexlimdva | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  →  ∃ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 84 | 83 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 85 | 84 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) )  ↔  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 86 | 82 85 | imbitrdi | ⊢ ( ( 𝑞  ∈  ℕ  ∧  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝑞  ∈  ℕ  →  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 88 | 87 | a2d | ⊢ ( 𝑞  ∈  ℕ  →  ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝑞 ) )  →  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 89 | 4 8 12 16 25 88 | nnind | ⊢ ( 𝐴  ∈  ℕ  →  ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 90 | 89 | com12 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ( 𝐴  ∈  ℕ  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 91 | 90 | 3impia | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∧  𝐴  ∈  ℕ )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) |