Metamath Proof Explorer


Theorem incsequz

Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion incsequz ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑝 = 1 → ( ℤ𝑝 ) = ( ℤ ‘ 1 ) )
2 1 eleq2d ( 𝑝 = 1 → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) ) )
3 2 rexbidv ( 𝑝 = 1 → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) ) )
4 3 imbi2d ( 𝑝 = 1 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) ) ) )
5 fveq2 ( 𝑝 = 𝑞 → ( ℤ𝑝 ) = ( ℤ𝑞 ) )
6 5 eleq2d ( 𝑝 = 𝑞 → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ) )
7 6 rexbidv ( 𝑝 = 𝑞 → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ) )
8 7 imbi2d ( 𝑝 = 𝑞 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ) ) )
9 fveq2 ( 𝑝 = ( 𝑞 + 1 ) → ( ℤ𝑝 ) = ( ℤ ‘ ( 𝑞 + 1 ) ) )
10 9 eleq2d ( 𝑝 = ( 𝑞 + 1 ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
11 10 rexbidv ( 𝑝 = ( 𝑞 + 1 ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
12 11 imbi2d ( 𝑝 = ( 𝑞 + 1 ) → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) ) )
13 fveq2 ( 𝑝 = 𝐴 → ( ℤ𝑝 ) = ( ℤ𝐴 ) )
14 13 eleq2d ( 𝑝 = 𝐴 → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) )
15 14 rexbidv ( 𝑝 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) )
16 15 imbi2d ( 𝑝 = 𝐴 → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑝 ) ) ↔ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) ) )
17 1nn 1 ∈ ℕ
18 17 ne0ii ℕ ≠ ∅
19 ffvelrn ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℕ )
20 elnnuz ( ( 𝐹𝑛 ) ∈ ℕ ↔ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
21 19 20 sylib ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
22 21 ralrimiva ( 𝐹 : ℕ ⟶ ℕ → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
23 r19.2z ( ( ℕ ≠ ∅ ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
24 18 22 23 sylancr ( 𝐹 : ℕ ⟶ ℕ → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
25 24 adantr ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ 1 ) )
26 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
27 26 adantl ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ )
28 nnre ( 𝑞 ∈ ℕ → 𝑞 ∈ ℝ )
29 28 ad2antrr ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑞 ∈ ℝ )
30 19 nnred ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℝ )
31 30 adantlr ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℝ )
32 31 adantll ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℝ )
33 1red ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ )
34 29 32 33 leadd1d ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ≤ ( 𝐹𝑛 ) ↔ ( 𝑞 + 1 ) ≤ ( ( 𝐹𝑛 ) + 1 ) ) )
35 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
36 fvoveq1 ( 𝑚 = 𝑛 → ( 𝐹 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
37 35 36 breq12d ( 𝑚 = 𝑛 → ( ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
38 37 rspcv ( 𝑛 ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) → ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
39 38 imdistani ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝑛 ∈ ℕ ∧ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
40 ffvelrn ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ )
41 26 40 sylan2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ )
42 nnltp1le ( ( ( 𝐹𝑛 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℕ ) → ( ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
43 19 41 42 syl2anc ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
44 43 biimpa ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
45 44 anasss ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) → ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
46 39 45 sylan2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
47 46 anass1rs ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
48 47 adantll ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
49 peano2re ( 𝑞 ∈ ℝ → ( 𝑞 + 1 ) ∈ ℝ )
50 28 49 syl ( 𝑞 ∈ ℕ → ( 𝑞 + 1 ) ∈ ℝ )
51 50 ad2antrr ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 + 1 ) ∈ ℝ )
52 peano2nn ( ( 𝐹𝑛 ) ∈ ℕ → ( ( 𝐹𝑛 ) + 1 ) ∈ ℕ )
53 19 52 syl ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) + 1 ) ∈ ℕ )
54 53 nnred ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) + 1 ) ∈ ℝ )
55 54 adantll ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) + 1 ) ∈ ℝ )
56 40 nnred ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
57 26 56 sylan2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
58 57 adantll ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
59 letr ( ( ( 𝑞 + 1 ) ∈ ℝ ∧ ( ( 𝐹𝑛 ) + 1 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹𝑛 ) + 1 ) ∧ ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
60 51 55 58 59 syl3anc ( ( ( 𝑞 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹𝑛 ) + 1 ) ∧ ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
61 60 adantlrr ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑞 + 1 ) ≤ ( ( 𝐹𝑛 ) + 1 ) ∧ ( ( 𝐹𝑛 ) + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
62 48 61 mpan2d ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑞 + 1 ) ≤ ( ( 𝐹𝑛 ) + 1 ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
63 34 62 sylbid ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ≤ ( 𝐹𝑛 ) → ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
64 nnz ( 𝑞 ∈ ℕ → 𝑞 ∈ ℤ )
65 19 nnzd ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℤ )
66 eluz ( ( 𝑞 ∈ ℤ ∧ ( 𝐹𝑛 ) ∈ ℤ ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ↔ 𝑞 ≤ ( 𝐹𝑛 ) ) )
67 64 65 66 syl2an ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ↔ 𝑞 ≤ ( 𝐹𝑛 ) ) )
68 67 adantrlr ( ( 𝑞 ∈ ℕ ∧ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ↔ 𝑞 ≤ ( 𝐹𝑛 ) ) )
69 68 anassrs ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ↔ 𝑞 ≤ ( 𝐹𝑛 ) ) )
70 64 peano2zd ( 𝑞 ∈ ℕ → ( 𝑞 + 1 ) ∈ ℤ )
71 40 nnzd ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ )
72 26 71 sylan2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ )
73 eluz ( ( ( 𝑞 + 1 ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
74 70 72 73 syl2an ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
75 74 adantrlr ( ( 𝑞 ∈ ℕ ∧ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
76 75 anassrs ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝑞 + 1 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
77 63 69 76 3imtr4d ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
78 fveq2 ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
79 78 eleq1d ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
80 79 rspcev ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) → ∃ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) )
81 27 77 80 syl6an ( ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) → ∃ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
82 81 rexlimdva ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) → ∃ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
83 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
84 83 eleq1d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
85 84 cbvrexvw ( ∃ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) )
86 82 85 syl6ib ( ( 𝑞 ∈ ℕ ∧ ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) )
87 86 ex ( 𝑞 ∈ ℕ → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) ) )
88 87 a2d ( 𝑞 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝑞 ) ) → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝑞 + 1 ) ) ) ) )
89 4 8 12 16 25 88 nnind ( 𝐴 ∈ ℕ → ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) )
90 89 com12 ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝐴 ∈ ℕ → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) )
91 90 3impia ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) )