| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incsequz | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∧  𝐴  ∈  ℕ )  →  ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 2 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 3 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 4 |  | sopo | ⊢ (  <   Or  ℝ  →   <   Po  ℝ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢  <   Po  ℝ | 
						
							| 6 |  | poss | ⊢ ( ℕ  ⊆  ℝ  →  (  <   Po  ℝ  →   <   Po  ℕ ) ) | 
						
							| 7 | 2 5 6 | mp2 | ⊢  <   Po  ℕ | 
						
							| 8 |  | seqpo | ⊢ ( (  <   Po  ℕ  ∧  𝐹 : ℕ ⟶ ℕ )  →  ( ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ↔  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ( ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ↔  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝐹 : ℕ ⟶ ℕ  →  ( ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  →  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 11 | 10 | imdistani | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  →  ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 12 |  | uzp1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝑘  =  𝑛  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 15 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 16 | 15 | nnzd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 17 |  | uzid | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ℤ  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 20 | 14 19 | eqeltrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 21 | 20 | adantllr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 22 |  | fvoveq1 | ⊢ ( 𝑝  =  𝑛  →  ( ℤ≥ ‘ ( 𝑝  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑝  =  𝑛  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 )  ↔  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 25 | 22 24 | raleqbidv | ⊢ ( 𝑝  =  𝑛  →  ( ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 )  ↔  ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 26 | 25 | rspccva | ⊢ ( ( ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑞  =  𝑘  →  ( 𝐹 ‘ 𝑞 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( 𝑞  =  𝑘  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑞 )  ↔  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 29 | 28 | rspccva | ⊢ ( ( ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑞 )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 30 | 26 29 | sylan | ⊢ ( ( ( ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 31 | 30 | adantlll | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 | 16 | adantr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 33 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 34 |  | elnnuz | ⊢ ( ( 𝑛  +  1 )  ∈  ℕ  ↔  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 36 |  | uztrn | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 37 | 36 | ancoms | ⊢ ( ( ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 40 | 35 39 | sylan | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 41 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 42 | 41 | nnzd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 43 | 40 42 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 44 | 43 | anassrs | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 45 |  | zre | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ℤ  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 46 |  | zre | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℤ  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 47 |  | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑛 )  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 48 | 45 46 47 | syl2an | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑛 )  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 49 |  | eluz | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝐹 ‘ 𝑛 )  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 50 | 48 49 | sylibrd | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 32 44 50 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 51 | adantllr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 53 | 31 52 | mpd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 54 | 21 53 | jaodan | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑘  =  𝑛  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 55 | 12 54 | sylan2 | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 56 |  | uztrn | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 57 | 56 | ex | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 58 | 55 57 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 59 | 58 | adantllr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝐴  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 60 | 59 | ralrimdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝐴  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑝  ∈  ℕ ∀ 𝑞  ∈  ( ℤ≥ ‘ ( 𝑝  +  1 ) ) ( 𝐹 ‘ 𝑝 )  <  ( 𝐹 ‘ 𝑞 ) )  ∧  𝐴  ∈  ℕ )  →  ( 𝑛  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) ) | 
						
							| 62 | 11 61 | stoic3 | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∧  𝐴  ∈  ℕ )  →  ( 𝑛  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) ) | 
						
							| 63 | 62 | reximdvai | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∧  𝐴  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) ) | 
						
							| 64 | 1 63 | mpd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ  ∧  ∀ 𝑚  ∈  ℕ ( 𝐹 ‘ 𝑚 )  <  ( 𝐹 ‘ ( 𝑚  +  1 ) )  ∧  𝐴  ∈  ℕ )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) |