Step |
Hyp |
Ref |
Expression |
1 |
|
incsequz |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
2 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
3 |
|
ltso |
⊢ < Or ℝ |
4 |
|
sopo |
⊢ ( < Or ℝ → < Po ℝ ) |
5 |
3 4
|
ax-mp |
⊢ < Po ℝ |
6 |
|
poss |
⊢ ( ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ ) ) |
7 |
2 5 6
|
mp2 |
⊢ < Po ℕ |
8 |
|
seqpo |
⊢ ( ( < Po ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
9 |
7 8
|
mpan |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
10 |
9
|
biimpd |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) → ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
11 |
10
|
imdistani |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
12 |
|
uzp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑘 = 𝑛 ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
15 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℕ ) |
16 |
15
|
nnzd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℤ ) |
17 |
|
uzid |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ℤ → ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
20 |
14 19
|
eqeltrd |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
21 |
20
|
adantllr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
22 |
|
fvoveq1 |
⊢ ( 𝑝 = 𝑛 → ( ℤ≥ ‘ ( 𝑝 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑛 ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ↔ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
25 |
22 24
|
raleqbidv |
⊢ ( 𝑝 = 𝑛 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑞 ) ) ) |
26 |
25
|
rspccva |
⊢ ( ( ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑞 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑘 ) ) |
28 |
27
|
breq2d |
⊢ ( 𝑞 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑞 ) ↔ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) ) ) |
29 |
28
|
rspccva |
⊢ ( ( ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑞 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) ) |
30 |
26 29
|
sylan |
⊢ ( ( ( ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) ) |
31 |
30
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) ) |
32 |
16
|
adantr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℤ ) |
33 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
34 |
|
elnnuz |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ ↔ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
35 |
33 34
|
sylib |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
36 |
|
uztrn |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
37 |
36
|
ancoms |
⊢ ( ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
38 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
39 |
37 38
|
sylibr |
⊢ ( ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
40 |
35 39
|
sylan |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
41 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ ) |
42 |
41
|
nnzd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
43 |
40 42
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
44 |
43
|
anassrs |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
45 |
|
zre |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ℤ → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
46 |
|
zre |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℤ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
47 |
|
ltle |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
48 |
45 46 47
|
syl2an |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
49 |
|
eluz |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
50 |
48 49
|
sylibrd |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
51 |
32 44 50
|
syl2anc |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
52 |
51
|
adantllr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
53 |
31 52
|
mpd |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
54 |
21 53
|
jaodan |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 = 𝑛 ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
55 |
12 54
|
sylan2 |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
56 |
|
uztrn |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
57 |
56
|
ex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
58 |
55 57
|
syl |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
59 |
58
|
adantllr |
⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
60 |
59
|
ralrimdva |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
61 |
60
|
ex |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑝 + 1 ) ) ( 𝐹 ‘ 𝑝 ) < ( 𝐹 ‘ 𝑞 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑛 ∈ ℕ → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) ) |
62 |
11 61
|
stoic3 |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑛 ∈ ℕ → ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) ) |
63 |
62
|
reximdvai |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
64 |
1 63
|
mpd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |