Metamath Proof Explorer


Theorem incsequz2

Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion incsequz2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) )

Proof

Step Hyp Ref Expression
1 incsequz ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) )
2 nnssre ℕ ⊆ ℝ
3 ltso < Or ℝ
4 sopo ( < Or ℝ → < Po ℝ )
5 3 4 ax-mp < Po ℝ
6 poss ( ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ ) )
7 2 5 6 mp2 < Po ℕ
8 seqpo ( ( < Po ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) )
9 7 8 mpan ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) )
10 9 biimpd ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) → ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) )
11 10 imdistani ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) → ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) )
12 uzp1 ( 𝑘 ∈ ( ℤ𝑛 ) → ( 𝑘 = 𝑛𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) )
13 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
14 13 adantl ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
15 ffvelrn ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℕ )
16 15 nnzd ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ℤ )
17 uzid ( ( 𝐹𝑛 ) ∈ ℤ → ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
18 16 17 syl ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
19 18 adantr ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹𝑛 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
20 14 19 eqeltrd ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
21 20 adantllr ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
22 fvoveq1 ( 𝑝 = 𝑛 → ( ℤ ‘ ( 𝑝 + 1 ) ) = ( ℤ ‘ ( 𝑛 + 1 ) ) )
23 fveq2 ( 𝑝 = 𝑛 → ( 𝐹𝑝 ) = ( 𝐹𝑛 ) )
24 23 breq1d ( 𝑝 = 𝑛 → ( ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ↔ ( 𝐹𝑛 ) < ( 𝐹𝑞 ) ) )
25 22 24 raleqbidv ( 𝑝 = 𝑛 → ( ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ↔ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ( 𝐹𝑛 ) < ( 𝐹𝑞 ) ) )
26 25 rspccva ( ( ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ( 𝐹𝑛 ) < ( 𝐹𝑞 ) )
27 fveq2 ( 𝑞 = 𝑘 → ( 𝐹𝑞 ) = ( 𝐹𝑘 ) )
28 27 breq2d ( 𝑞 = 𝑘 → ( ( 𝐹𝑛 ) < ( 𝐹𝑞 ) ↔ ( 𝐹𝑛 ) < ( 𝐹𝑘 ) ) )
29 28 rspccva ( ( ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ( 𝐹𝑛 ) < ( 𝐹𝑞 ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑛 ) < ( 𝐹𝑘 ) )
30 26 29 sylan ( ( ( ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑛 ) < ( 𝐹𝑘 ) )
31 30 adantlll ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑛 ) < ( 𝐹𝑘 ) )
32 16 adantr ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑛 ) ∈ ℤ )
33 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
34 elnnuz ( ( 𝑛 + 1 ) ∈ ℕ ↔ ( 𝑛 + 1 ) ∈ ( ℤ ‘ 1 ) )
35 33 34 sylib ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ( ℤ ‘ 1 ) )
36 uztrn ( ( 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ℤ ‘ 1 ) ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
37 36 ancoms ( ( ( 𝑛 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
38 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
39 37 38 sylibr ( ( ( 𝑛 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ )
40 35 39 sylan ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ )
41 ffvelrn ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ ℕ )
42 41 nnzd ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ ℤ )
43 40 42 sylan2 ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) ) → ( 𝐹𝑘 ) ∈ ℤ )
44 43 anassrs ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑘 ) ∈ ℤ )
45 zre ( ( 𝐹𝑛 ) ∈ ℤ → ( 𝐹𝑛 ) ∈ ℝ )
46 zre ( ( 𝐹𝑘 ) ∈ ℤ → ( 𝐹𝑘 ) ∈ ℝ )
47 ltle ( ( ( 𝐹𝑛 ) ∈ ℝ ∧ ( 𝐹𝑘 ) ∈ ℝ ) → ( ( 𝐹𝑛 ) < ( 𝐹𝑘 ) → ( 𝐹𝑛 ) ≤ ( 𝐹𝑘 ) ) )
48 45 46 47 syl2an ( ( ( 𝐹𝑛 ) ∈ ℤ ∧ ( 𝐹𝑘 ) ∈ ℤ ) → ( ( 𝐹𝑛 ) < ( 𝐹𝑘 ) → ( 𝐹𝑛 ) ≤ ( 𝐹𝑘 ) ) )
49 eluz ( ( ( 𝐹𝑛 ) ∈ ℤ ∧ ( 𝐹𝑘 ) ∈ ℤ ) → ( ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) ↔ ( 𝐹𝑛 ) ≤ ( 𝐹𝑘 ) ) )
50 48 49 sylibrd ( ( ( 𝐹𝑛 ) ∈ ℤ ∧ ( 𝐹𝑘 ) ∈ ℤ ) → ( ( 𝐹𝑛 ) < ( 𝐹𝑘 ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) ) )
51 32 44 50 syl2anc ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹𝑛 ) < ( 𝐹𝑘 ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) ) )
52 51 adantllr ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝐹𝑛 ) < ( 𝐹𝑘 ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) ) )
53 31 52 mpd ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
54 21 53 jaodan ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 = 𝑛𝑘 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
55 12 54 sylan2 ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑛 ) ) → ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) )
56 uztrn ( ( ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) ∧ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) ) → ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) )
57 56 ex ( ( 𝐹𝑘 ) ∈ ( ℤ ‘ ( 𝐹𝑛 ) ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) )
58 55 57 syl ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑛 ) ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) )
59 58 adantllr ( ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑛 ) ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) )
60 59 ralrimdva ( ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) )
61 60 ex ( ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ( ℤ ‘ ( 𝑝 + 1 ) ) ( 𝐹𝑝 ) < ( 𝐹𝑞 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑛 ∈ ℕ → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) ) )
62 11 61 stoic3 ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑛 ∈ ℕ → ( ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) ) )
63 62 reximdvai ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ ( ℤ𝐴 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) ) )
64 1 63 mpd ( ( 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ ℕ ( 𝐹𝑚 ) < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( 𝐹𝑘 ) ∈ ( ℤ𝐴 ) )