| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi | ⊢ ( 0 ... 𝐵 )  ∈  Fin | 
						
							| 2 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℕ ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 5 | 4 | adantlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  <  𝐵 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 7 |  | nnnn0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℕ0 ) | 
						
							| 8 | 7 | ad3antlr | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  <  𝐵 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 9 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 10 | 2 9 | syl | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 12 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 14 |  | ltle | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  <  𝐵  →  𝑥  ≤  𝐵 ) ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  <  𝐵  →  𝑥  ≤  𝐵 ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  <  𝐵 )  →  𝑥  ≤  𝐵 ) | 
						
							| 17 |  | elfz2nn0 | ⊢ ( 𝑥  ∈  ( 0 ... 𝐵 )  ↔  ( 𝑥  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 18 | 6 8 16 17 | syl3anbrc | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  <  𝐵 )  →  𝑥  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  <  𝐵  →  𝑥  ∈  ( 0 ... 𝐵 ) ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ∀ 𝑥  ∈  𝐴 ( 𝑥  <  𝐵  →  𝑥  ∈  ( 0 ... 𝐵 ) ) ) | 
						
							| 21 |  | rabss | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝑥  <  𝐵 }  ⊆  ( 0 ... 𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  <  𝐵  →  𝑥  ∈  ( 0 ... 𝐵 ) ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  { 𝑥  ∈  𝐴  ∣  𝑥  <  𝐵 }  ⊆  ( 0 ... 𝐵 ) ) | 
						
							| 23 |  | ssfi | ⊢ ( ( ( 0 ... 𝐵 )  ∈  Fin  ∧  { 𝑥  ∈  𝐴  ∣  𝑥  <  𝐵 }  ⊆  ( 0 ... 𝐵 ) )  →  { 𝑥  ∈  𝐴  ∣  𝑥  <  𝐵 }  ∈  Fin ) | 
						
							| 24 | 1 22 23 | sylancr | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  { 𝑥  ∈  𝐴  ∣  𝑥  <  𝐵 }  ∈  Fin ) |