| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
⊢ ( 0 ... 𝐵 ) ∈ Fin |
| 2 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℕ ) |
| 3 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℕ0 ) |
| 5 |
4
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℕ0 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 < 𝐵 ) → 𝑥 ∈ ℕ0 ) |
| 7 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
| 8 |
7
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 < 𝐵 ) → 𝐵 ∈ ℕ0 ) |
| 9 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
| 10 |
2 9
|
syl |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 11 |
10
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 12 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 14 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 < 𝐵 → 𝑥 ≤ 𝐵 ) ) |
| 15 |
11 13 14
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝐵 → 𝑥 ≤ 𝐵 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 < 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 17 |
|
elfz2nn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝐵 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑥 ≤ 𝐵 ) ) |
| 18 |
6 8 16 17
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 < 𝐵 ) → 𝑥 ∈ ( 0 ... 𝐵 ) ) |
| 19 |
18
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝐵 → 𝑥 ∈ ( 0 ... 𝐵 ) ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 < 𝐵 → 𝑥 ∈ ( 0 ... 𝐵 ) ) ) |
| 21 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵 } ⊆ ( 0 ... 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 < 𝐵 → 𝑥 ∈ ( 0 ... 𝐵 ) ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵 } ⊆ ( 0 ... 𝐵 ) ) |
| 23 |
|
ssfi |
⊢ ( ( ( 0 ... 𝐵 ) ∈ Fin ∧ { 𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵 } ⊆ ( 0 ... 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵 } ∈ Fin ) |
| 24 |
1 22 23
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 < 𝐵 } ∈ Fin ) |