Metamath Proof Explorer


Theorem nnubfi

Description: A bounded above set of positive integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion nnubfi A B x A | x < B Fin

Proof

Step Hyp Ref Expression
1 fzfi 0 B Fin
2 ssel2 A x A x
3 nnnn0 x x 0
4 2 3 syl A x A x 0
5 4 adantlr A B x A x 0
6 5 adantr A B x A x < B x 0
7 nnnn0 B B 0
8 7 ad3antlr A B x A x < B B 0
9 nnre x x
10 2 9 syl A x A x
11 10 adantlr A B x A x
12 nnre B B
13 12 ad2antlr A B x A B
14 ltle x B x < B x B
15 11 13 14 syl2anc A B x A x < B x B
16 15 imp A B x A x < B x B
17 elfz2nn0 x 0 B x 0 B 0 x B
18 6 8 16 17 syl3anbrc A B x A x < B x 0 B
19 18 ex A B x A x < B x 0 B
20 19 ralrimiva A B x A x < B x 0 B
21 rabss x A | x < B 0 B x A x < B x 0 B
22 20 21 sylibr A B x A | x < B 0 B
23 ssfi 0 B Fin x A | x < B 0 B x A | x < B Fin
24 1 22 23 sylancr A B x A | x < B Fin