| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eq0 |
|
| 2 |
|
breq2 |
|
| 3 |
2
|
elrab |
|
| 4 |
3
|
notbii |
|
| 5 |
|
imnan |
|
| 6 |
4 5
|
sylbb2 |
|
| 7 |
6
|
alimi |
|
| 8 |
|
df-ral |
|
| 9 |
7 8
|
sylibr |
|
| 10 |
|
ssel2 |
|
| 11 |
10
|
nnred |
|
| 12 |
11
|
adantlr |
|
| 13 |
|
nnre |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
|
lenlt |
|
| 16 |
15
|
biimprd |
|
| 17 |
12 14 16
|
syl2anc |
|
| 18 |
17
|
ralimdva |
|
| 19 |
|
fzfi |
|
| 20 |
10
|
nnnn0d |
|
| 21 |
20
|
adantlr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
nnnn0 |
|
| 24 |
23
|
ad3antlr |
|
| 25 |
|
simpr |
|
| 26 |
22 24 25
|
3jca |
|
| 27 |
26
|
ex |
|
| 28 |
|
elfz2nn0 |
|
| 29 |
27 28
|
imbitrrdi |
|
| 30 |
29
|
ralimdva |
|
| 31 |
30
|
imp |
|
| 32 |
|
dfss3 |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
|
ssfi |
|
| 35 |
19 33 34
|
sylancr |
|
| 36 |
35
|
ex |
|
| 37 |
18 36
|
syld |
|
| 38 |
9 37
|
syl5 |
|
| 39 |
1 38
|
biimtrid |
|
| 40 |
39
|
necon3bd |
|
| 41 |
40
|
imp |
|
| 42 |
41
|
an32s |
|
| 43 |
42
|
3impa |
|