| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eq0 | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  =  ∅  ↔  ∀ 𝑦 ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 } ) | 
						
							| 2 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  <  𝑥  ↔  𝐵  <  𝑦 ) ) | 
						
							| 3 | 2 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ↔  ( 𝑦  ∈  𝐴  ∧  𝐵  <  𝑦 ) ) | 
						
							| 4 | 3 | notbii | ⊢ ( ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ↔  ¬  ( 𝑦  ∈  𝐴  ∧  𝐵  <  𝑦 ) ) | 
						
							| 5 |  | imnan | ⊢ ( ( 𝑦  ∈  𝐴  →  ¬  𝐵  <  𝑦 )  ↔  ¬  ( 𝑦  ∈  𝐴  ∧  𝐵  <  𝑦 ) ) | 
						
							| 6 | 4 5 | sylbb2 | ⊢ ( ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  →  ( 𝑦  ∈  𝐴  →  ¬  𝐵  <  𝑦 ) ) | 
						
							| 7 | 6 | alimi | ⊢ ( ∀ 𝑦 ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  →  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝐵  <  𝑦 ) ) | 
						
							| 8 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐴 ¬  𝐵  <  𝑦  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ¬  𝐵  <  𝑦 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ∀ 𝑦 ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  →  ∀ 𝑦  ∈  𝐴 ¬  𝐵  <  𝑦 ) | 
						
							| 10 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℕ ) | 
						
							| 11 | 10 | nnred | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 12 | 11 | adantlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 13 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 |  | lenlt | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑦  ≤  𝐵  ↔  ¬  𝐵  <  𝑦 ) ) | 
						
							| 16 | 15 | biimprd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  𝐵  <  𝑦  →  𝑦  ≤  𝐵 ) ) | 
						
							| 17 | 12 14 16 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝐵  <  𝑦  →  𝑦  ≤  𝐵 ) ) | 
						
							| 18 | 17 | ralimdva | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝐵  <  𝑦  →  ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵 ) ) | 
						
							| 19 |  | fzfi | ⊢ ( 0 ... 𝐵 )  ∈  Fin | 
						
							| 20 | 10 | nnnn0d | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantlr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ≤  𝐵 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 23 |  | nnnn0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℕ0 ) | 
						
							| 24 | 23 | ad3antlr | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ≤  𝐵 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ≤  𝐵 )  →  𝑦  ≤  𝐵 ) | 
						
							| 26 | 22 24 25 | 3jca | ⊢ ( ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ≤  𝐵 )  →  ( 𝑦  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑦  ≤  𝐵 ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ≤  𝐵  →  ( 𝑦  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 28 |  | elfz2nn0 | ⊢ ( 𝑦  ∈  ( 0 ... 𝐵 )  ↔  ( 𝑦  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑦  ≤  𝐵 ) ) | 
						
							| 29 | 27 28 | imbitrrdi | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ≤  𝐵  →  𝑦  ∈  ( 0 ... 𝐵 ) ) ) | 
						
							| 30 | 29 | ralimdva | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵  →  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 0 ... 𝐵 ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵 )  →  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 32 |  | dfss3 | ⊢ ( 𝐴  ⊆  ( 0 ... 𝐵 )  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 0 ... 𝐵 ) ) | 
						
							| 33 | 31 32 | sylibr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵 )  →  𝐴  ⊆  ( 0 ... 𝐵 ) ) | 
						
							| 34 |  | ssfi | ⊢ ( ( ( 0 ... 𝐵 )  ∈  Fin  ∧  𝐴  ⊆  ( 0 ... 𝐵 ) )  →  𝐴  ∈  Fin ) | 
						
							| 35 | 19 33 34 | sylancr | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵 )  →  𝐴  ∈  Fin ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝐵  →  𝐴  ∈  Fin ) ) | 
						
							| 37 | 18 36 | syld | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝐵  <  𝑦  →  𝐴  ∈  Fin ) ) | 
						
							| 38 | 9 37 | syl5 | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑦 ¬  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  →  𝐴  ∈  Fin ) ) | 
						
							| 39 | 1 38 | biimtrid | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  =  ∅  →  𝐴  ∈  Fin ) ) | 
						
							| 40 | 39 | necon3bd | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ¬  𝐴  ∈  Fin  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ≠  ∅ ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ¬  𝐴  ∈  Fin )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ≠  ∅ ) | 
						
							| 42 | 41 | an32s | ⊢ ( ( ( 𝐴  ⊆  ℕ  ∧  ¬  𝐴  ∈  Fin )  ∧  𝐵  ∈  ℕ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ≠  ∅ ) | 
						
							| 43 | 42 | 3impa | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  ¬  𝐴  ∈  Fin  ∧  𝐵  ∈  ℕ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  𝑥 }  ≠  ∅ ) |