Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
|- ( 0 ... B ) e. Fin |
2 |
|
ssel2 |
|- ( ( A C_ NN /\ x e. A ) -> x e. NN ) |
3 |
|
nnnn0 |
|- ( x e. NN -> x e. NN0 ) |
4 |
2 3
|
syl |
|- ( ( A C_ NN /\ x e. A ) -> x e. NN0 ) |
5 |
4
|
adantlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. NN0 ) |
6 |
5
|
adantr |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. NN0 ) |
7 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
8 |
7
|
ad3antlr |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> B e. NN0 ) |
9 |
|
nnre |
|- ( x e. NN -> x e. RR ) |
10 |
2 9
|
syl |
|- ( ( A C_ NN /\ x e. A ) -> x e. RR ) |
11 |
10
|
adantlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. RR ) |
12 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
13 |
12
|
ad2antlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> B e. RR ) |
14 |
|
ltle |
|- ( ( x e. RR /\ B e. RR ) -> ( x < B -> x <_ B ) ) |
15 |
11 13 14
|
syl2anc |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x <_ B ) ) |
16 |
15
|
imp |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x <_ B ) |
17 |
|
elfz2nn0 |
|- ( x e. ( 0 ... B ) <-> ( x e. NN0 /\ B e. NN0 /\ x <_ B ) ) |
18 |
6 8 16 17
|
syl3anbrc |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. ( 0 ... B ) ) |
19 |
18
|
ex |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x e. ( 0 ... B ) ) ) |
20 |
19
|
ralrimiva |
|- ( ( A C_ NN /\ B e. NN ) -> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) |
21 |
|
rabss |
|- ( { x e. A | x < B } C_ ( 0 ... B ) <-> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) |
22 |
20 21
|
sylibr |
|- ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } C_ ( 0 ... B ) ) |
23 |
|
ssfi |
|- ( ( ( 0 ... B ) e. Fin /\ { x e. A | x < B } C_ ( 0 ... B ) ) -> { x e. A | x < B } e. Fin ) |
24 |
1 22 23
|
sylancr |
|- ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } e. Fin ) |