| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi |  |-  ( 0 ... B ) e. Fin | 
						
							| 2 |  | ssel2 |  |-  ( ( A C_ NN /\ x e. A ) -> x e. NN ) | 
						
							| 3 |  | nnnn0 |  |-  ( x e. NN -> x e. NN0 ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A C_ NN /\ x e. A ) -> x e. NN0 ) | 
						
							| 5 | 4 | adantlr |  |-  ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. NN0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. NN0 ) | 
						
							| 7 |  | nnnn0 |  |-  ( B e. NN -> B e. NN0 ) | 
						
							| 8 | 7 | ad3antlr |  |-  ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> B e. NN0 ) | 
						
							| 9 |  | nnre |  |-  ( x e. NN -> x e. RR ) | 
						
							| 10 | 2 9 | syl |  |-  ( ( A C_ NN /\ x e. A ) -> x e. RR ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. RR ) | 
						
							| 12 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> B e. RR ) | 
						
							| 14 |  | ltle |  |-  ( ( x e. RR /\ B e. RR ) -> ( x < B -> x <_ B ) ) | 
						
							| 15 | 11 13 14 | syl2anc |  |-  ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x <_ B ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x <_ B ) | 
						
							| 17 |  | elfz2nn0 |  |-  ( x e. ( 0 ... B ) <-> ( x e. NN0 /\ B e. NN0 /\ x <_ B ) ) | 
						
							| 18 | 6 8 16 17 | syl3anbrc |  |-  ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. ( 0 ... B ) ) | 
						
							| 19 | 18 | ex |  |-  ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x e. ( 0 ... B ) ) ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ( A C_ NN /\ B e. NN ) -> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) | 
						
							| 21 |  | rabss |  |-  ( { x e. A | x < B } C_ ( 0 ... B ) <-> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } C_ ( 0 ... B ) ) | 
						
							| 23 |  | ssfi |  |-  ( ( ( 0 ... B ) e. Fin /\ { x e. A | x < B } C_ ( 0 ... B ) ) -> { x e. A | x < B } e. Fin ) | 
						
							| 24 | 1 22 23 | sylancr |  |-  ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } e. Fin ) |