| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
|- ( 0 ... B ) e. Fin |
| 2 |
|
ssel2 |
|- ( ( A C_ NN /\ x e. A ) -> x e. NN ) |
| 3 |
|
nnnn0 |
|- ( x e. NN -> x e. NN0 ) |
| 4 |
2 3
|
syl |
|- ( ( A C_ NN /\ x e. A ) -> x e. NN0 ) |
| 5 |
4
|
adantlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. NN0 ) |
| 6 |
5
|
adantr |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. NN0 ) |
| 7 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
| 8 |
7
|
ad3antlr |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> B e. NN0 ) |
| 9 |
|
nnre |
|- ( x e. NN -> x e. RR ) |
| 10 |
2 9
|
syl |
|- ( ( A C_ NN /\ x e. A ) -> x e. RR ) |
| 11 |
10
|
adantlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> x e. RR ) |
| 12 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 13 |
12
|
ad2antlr |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> B e. RR ) |
| 14 |
|
ltle |
|- ( ( x e. RR /\ B e. RR ) -> ( x < B -> x <_ B ) ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x <_ B ) ) |
| 16 |
15
|
imp |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x <_ B ) |
| 17 |
|
elfz2nn0 |
|- ( x e. ( 0 ... B ) <-> ( x e. NN0 /\ B e. NN0 /\ x <_ B ) ) |
| 18 |
6 8 16 17
|
syl3anbrc |
|- ( ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) /\ x < B ) -> x e. ( 0 ... B ) ) |
| 19 |
18
|
ex |
|- ( ( ( A C_ NN /\ B e. NN ) /\ x e. A ) -> ( x < B -> x e. ( 0 ... B ) ) ) |
| 20 |
19
|
ralrimiva |
|- ( ( A C_ NN /\ B e. NN ) -> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) |
| 21 |
|
rabss |
|- ( { x e. A | x < B } C_ ( 0 ... B ) <-> A. x e. A ( x < B -> x e. ( 0 ... B ) ) ) |
| 22 |
20 21
|
sylibr |
|- ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } C_ ( 0 ... B ) ) |
| 23 |
|
ssfi |
|- ( ( ( 0 ... B ) e. Fin /\ { x e. A | x < B } C_ ( 0 ... B ) ) -> { x e. A | x < B } e. Fin ) |
| 24 |
1 22 23
|
sylancr |
|- ( ( A C_ NN /\ B e. NN ) -> { x e. A | x < B } e. Fin ) |