Metamath Proof Explorer


Theorem incsequz2

Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion incsequz2 F:mFm<Fm+1AnknFkA

Proof

Step Hyp Ref Expression
1 incsequz F:mFm<Fm+1AnFnA
2 nnssre
3 ltso <Or
4 sopo <Or<Po
5 3 4 ax-mp <Po
6 poss <Po<Po
7 2 5 6 mp2 <Po
8 seqpo <PoF:mFm<Fm+1pqp+1Fp<Fq
9 7 8 mpan F:mFm<Fm+1pqp+1Fp<Fq
10 9 biimpd F:mFm<Fm+1pqp+1Fp<Fq
11 10 imdistani F:mFm<Fm+1F:pqp+1Fp<Fq
12 uzp1 knk=nkn+1
13 fveq2 k=nFk=Fn
14 13 adantl F:nk=nFk=Fn
15 ffvelcdm F:nFn
16 15 nnzd F:nFn
17 uzid FnFnFn
18 16 17 syl F:nFnFn
19 18 adantr F:nk=nFnFn
20 14 19 eqeltrd F:nk=nFkFn
21 20 adantllr F:pqp+1Fp<Fqnk=nFkFn
22 fvoveq1 p=np+1=n+1
23 fveq2 p=nFp=Fn
24 23 breq1d p=nFp<FqFn<Fq
25 22 24 raleqbidv p=nqp+1Fp<Fqqn+1Fn<Fq
26 25 rspccva pqp+1Fp<Fqnqn+1Fn<Fq
27 fveq2 q=kFq=Fk
28 27 breq2d q=kFn<FqFn<Fk
29 28 rspccva qn+1Fn<Fqkn+1Fn<Fk
30 26 29 sylan pqp+1Fp<Fqnkn+1Fn<Fk
31 30 adantlll F:pqp+1Fp<Fqnkn+1Fn<Fk
32 16 adantr F:nkn+1Fn
33 peano2nn nn+1
34 elnnuz n+1n+11
35 33 34 sylib nn+11
36 uztrn kn+1n+11k1
37 36 ancoms n+11kn+1k1
38 elnnuz kk1
39 37 38 sylibr n+11kn+1k
40 35 39 sylan nkn+1k
41 ffvelcdm F:kFk
42 41 nnzd F:kFk
43 40 42 sylan2 F:nkn+1Fk
44 43 anassrs F:nkn+1Fk
45 zre FnFn
46 zre FkFk
47 ltle FnFkFn<FkFnFk
48 45 46 47 syl2an FnFkFn<FkFnFk
49 eluz FnFkFkFnFnFk
50 48 49 sylibrd FnFkFn<FkFkFn
51 32 44 50 syl2anc F:nkn+1Fn<FkFkFn
52 51 adantllr F:pqp+1Fp<Fqnkn+1Fn<FkFkFn
53 31 52 mpd F:pqp+1Fp<Fqnkn+1FkFn
54 21 53 jaodan F:pqp+1Fp<Fqnk=nkn+1FkFn
55 12 54 sylan2 F:pqp+1Fp<FqnknFkFn
56 uztrn FkFnFnAFkA
57 56 ex FkFnFnAFkA
58 55 57 syl F:pqp+1Fp<FqnknFnAFkA
59 58 adantllr F:pqp+1Fp<FqAnknFnAFkA
60 59 ralrimdva F:pqp+1Fp<FqAnFnAknFkA
61 60 ex F:pqp+1Fp<FqAnFnAknFkA
62 11 61 stoic3 F:mFm<Fm+1AnFnAknFkA
63 62 reximdvai F:mFm<Fm+1AnFnAnknFkA
64 1 63 mpd F:mFm<Fm+1AnknFkA