Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | incsequz2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incsequz | |
|
2 | nnssre | |
|
3 | ltso | |
|
4 | sopo | |
|
5 | 3 4 | ax-mp | |
6 | poss | |
|
7 | 2 5 6 | mp2 | |
8 | seqpo | |
|
9 | 7 8 | mpan | |
10 | 9 | biimpd | |
11 | 10 | imdistani | |
12 | uzp1 | |
|
13 | fveq2 | |
|
14 | 13 | adantl | |
15 | ffvelcdm | |
|
16 | 15 | nnzd | |
17 | uzid | |
|
18 | 16 17 | syl | |
19 | 18 | adantr | |
20 | 14 19 | eqeltrd | |
21 | 20 | adantllr | |
22 | fvoveq1 | |
|
23 | fveq2 | |
|
24 | 23 | breq1d | |
25 | 22 24 | raleqbidv | |
26 | 25 | rspccva | |
27 | fveq2 | |
|
28 | 27 | breq2d | |
29 | 28 | rspccva | |
30 | 26 29 | sylan | |
31 | 30 | adantlll | |
32 | 16 | adantr | |
33 | peano2nn | |
|
34 | elnnuz | |
|
35 | 33 34 | sylib | |
36 | uztrn | |
|
37 | 36 | ancoms | |
38 | elnnuz | |
|
39 | 37 38 | sylibr | |
40 | 35 39 | sylan | |
41 | ffvelcdm | |
|
42 | 41 | nnzd | |
43 | 40 42 | sylan2 | |
44 | 43 | anassrs | |
45 | zre | |
|
46 | zre | |
|
47 | ltle | |
|
48 | 45 46 47 | syl2an | |
49 | eluz | |
|
50 | 48 49 | sylibrd | |
51 | 32 44 50 | syl2anc | |
52 | 51 | adantllr | |
53 | 31 52 | mpd | |
54 | 21 53 | jaodan | |
55 | 12 54 | sylan2 | |
56 | uztrn | |
|
57 | 56 | ex | |
58 | 55 57 | syl | |
59 | 58 | adantllr | |
60 | 59 | ralrimdva | |
61 | 60 | ex | |
62 | 11 61 | stoic3 | |
63 | 62 | reximdvai | |
64 | 1 63 | mpd | |