| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑚  +  1 )  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 2 | 1 | breq2d | ⊢ ( 𝑝  =  ( 𝑚  +  1 )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑝  =  ( 𝑚  +  1 )  →  ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) )  ↔  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) )  ↔  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 8 | 7 | breq2d | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑝  =  ( 𝑞  +  1 )  →  ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) )  ↔  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑝  =  𝑛  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑝  =  𝑛  →  ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) )  ↔  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑠  =  𝑚  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 14 |  | fvoveq1 | ⊢ ( 𝑠  =  𝑚  →  ( 𝐹 ‘ ( 𝑠  +  1 ) )  =  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 15 | 13 14 | breq12d | ⊢ ( 𝑠  =  𝑚  →  ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ↔  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑚  +  1 )  ∈  ℤ  →  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 19 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 20 |  | elnnuz | ⊢ ( ( 𝑚  +  1 )  ∈  ℕ  ↔  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 22 |  | uztrn | ⊢ ( ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  ∧  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑞  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 23 |  | elnnuz | ⊢ ( 𝑞  ∈  ℕ  ↔  𝑞  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  ∧  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑞  ∈  ℕ ) | 
						
							| 25 | 24 | expcom | ⊢ ( ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  𝑞  ∈  ℕ ) ) | 
						
							| 26 | 21 25 | syl | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  𝑞  ∈  ℕ ) ) | 
						
							| 27 | 26 | imdistani | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑠  =  𝑞  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 29 |  | fvoveq1 | ⊢ ( 𝑠  =  𝑞  →  ( 𝐹 ‘ ( 𝑠  +  1 ) )  =  ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 30 | 28 29 | breq12d | ⊢ ( 𝑠  =  𝑞  →  ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ↔  ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 31 | 30 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑞  ∈  ℕ )  →  ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 32 | 31 | ad2ant2l | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 34 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 )  ∈  𝐴 ) | 
						
							| 35 | 34 | adantrr | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  𝐴 ) | 
						
							| 36 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  𝑞  ∈  ℕ )  →  ( 𝐹 ‘ 𝑞 )  ∈  𝐴 ) | 
						
							| 37 | 36 | adantrl | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑞 )  ∈  𝐴 ) | 
						
							| 38 |  | peano2nn | ⊢ ( 𝑞  ∈  ℕ  →  ( 𝑞  +  1 )  ∈  ℕ ) | 
						
							| 39 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑞  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) | 
						
							| 40 | 38 39 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  𝑞  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) | 
						
							| 41 | 40 | adantrl | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) | 
						
							| 42 | 35 37 41 | 3jca | ⊢ ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑚 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑞 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) ) | 
						
							| 43 |  | potr | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( ( 𝐹 ‘ 𝑚 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑞 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  ∧  ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) | 
						
							| 44 | 43 | expcomd | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( ( 𝐹 ‘ 𝑚 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑞 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝐹 ‘ 𝑚 )  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑞 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝑞  +  1 ) )  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) ) | 
						
							| 46 | 42 45 | syl5 | ⊢ ( 𝑅  Po  𝐴  →  ( ( 𝐹 : ℕ ⟶ 𝐴  ∧  ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) ) | 
						
							| 47 | 46 | expdimp | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) ) | 
						
							| 49 | 33 48 | mpdd | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 50 | 27 49 | syl5 | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 51 | 50 | expdimp | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 52 | 51 | anasss | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 53 | 52 | com12 | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 54 | 53 | a2d | ⊢ ( 𝑞  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) )  →  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞  +  1 ) ) ) ) ) | 
						
							| 55 | 3 6 9 12 18 54 | uzind4 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 56 | 55 | com12 | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 57 | 56 | ralrimiv | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ∧  𝑚  ∈  ℕ ) )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 58 | 57 | anassrs | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  ∧  𝑚  ∈  ℕ )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 59 | 58 | ralrimiva | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  ∧  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) )  →  ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  →  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  →  ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 61 |  | fvoveq1 | ⊢ ( 𝑚  =  𝑠  →  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑚  =  𝑠  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 63 | 62 | breq1d | ⊢ ( 𝑚  =  𝑠  →  ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 64 | 61 63 | raleqbidv | ⊢ ( 𝑚  =  𝑠  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 65 | 64 | rspcv | ⊢ ( 𝑠  ∈  ℕ  →  ( ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 66 | 65 | imdistanri | ⊢ ( ( ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ∧  𝑠  ∈  ℕ )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ∧  𝑠  ∈  ℕ ) ) | 
						
							| 67 |  | peano2nn | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ ) | 
						
							| 68 | 67 | nnzd | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℤ ) | 
						
							| 69 |  | uzid | ⊢ ( ( 𝑠  +  1 )  ∈  ℤ  →  ( 𝑠  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 72 | 71 | breq2d | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 73 | 72 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ∧  ( 𝑠  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) )  →  ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 74 | 70 73 | sylan2 | ⊢ ( ( ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑠  +  1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ∧  𝑠  ∈  ℕ )  →  ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 75 | 66 74 | syl | ⊢ ( ( ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  ∧  𝑠  ∈  ℕ )  →  ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 )  →  ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 77 | 60 76 | impbid1 | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝐹 : ℕ ⟶ 𝐴 )  →  ( ∀ 𝑠  ∈  ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠  +  1 ) )  ↔  ∀ 𝑚  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |