Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑚 + 1 ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
2 |
1
|
breq2d |
⊢ ( 𝑝 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑝 = ( 𝑚 + 1 ) → ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ↔ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ↔ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑝 = ( 𝑞 + 1 ) → ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ↔ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑛 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑝 = 𝑛 → ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑝 ) ) ↔ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑠 = 𝑚 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑚 ) ) |
14 |
|
fvoveq1 |
⊢ ( 𝑠 = 𝑚 → ( 𝐹 ‘ ( 𝑠 + 1 ) ) = ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑠 = 𝑚 → ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ↔ ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
16 |
15
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
18 |
17
|
a1i |
⊢ ( ( 𝑚 + 1 ) ∈ ℤ → ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
19 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
20 |
|
elnnuz |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ ↔ ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
22 |
|
uztrn |
⊢ ( ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ∧ ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → 𝑞 ∈ ( ℤ≥ ‘ 1 ) ) |
23 |
|
elnnuz |
⊢ ( 𝑞 ∈ ℕ ↔ 𝑞 ∈ ( ℤ≥ ‘ 1 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ∧ ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → 𝑞 ∈ ℕ ) |
25 |
24
|
expcom |
⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → 𝑞 ∈ ℕ ) ) |
26 |
21 25
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → 𝑞 ∈ ℕ ) ) |
27 |
26
|
imdistani |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) |
28 |
|
fveq2 |
⊢ ( 𝑠 = 𝑞 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑞 ) ) |
29 |
|
fvoveq1 |
⊢ ( 𝑠 = 𝑞 → ( 𝐹 ‘ ( 𝑠 + 1 ) ) = ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) |
30 |
28 29
|
breq12d |
⊢ ( 𝑠 = 𝑞 → ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ↔ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) |
31 |
30
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑞 ∈ ℕ ) → ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) |
32 |
31
|
ad2ant2l |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) |
33 |
32
|
ex |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) → ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) |
34 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) |
35 |
34
|
adantrr |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ) |
36 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ 𝑞 ∈ ℕ ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
37 |
36
|
adantrl |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ) |
38 |
|
peano2nn |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 + 1 ) ∈ ℕ ) |
39 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑞 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) |
40 |
38 39
|
sylan2 |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ 𝑞 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) |
41 |
40
|
adantrl |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) |
42 |
35 37 41
|
3jca |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) ) |
43 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ∧ ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) |
44 |
43
|
expcomd |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
45 |
44
|
ex |
⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝐹 ‘ 𝑚 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝑞 + 1 ) ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) ) |
46 |
42 45
|
syl5 |
⊢ ( 𝑅 Po 𝐴 → ( ( 𝐹 : ℕ ⟶ 𝐴 ∧ ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) ) |
47 |
46
|
expdimp |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) → ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) → ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑞 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) ) |
49 |
33 48
|
mpdd |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) → ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
50 |
27 49
|
syl5 |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) → ( ( 𝑚 ∈ ℕ ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
51 |
50
|
expdimp |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
52 |
51
|
anasss |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
53 |
52
|
com12 |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
54 |
53
|
a2d |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑞 ) ) → ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ ( 𝑞 + 1 ) ) ) ) ) |
55 |
3 6 9 12 18 54
|
uzind4 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
56 |
55
|
com12 |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
57 |
56
|
ralrimiv |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ∧ 𝑚 ∈ ℕ ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) |
59 |
58
|
ralrimiva |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) ∧ ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) → ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) |
60 |
59
|
ex |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) → ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) → ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
61 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑠 → ( ℤ≥ ‘ ( 𝑚 + 1 ) ) = ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑚 = 𝑠 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑠 ) ) |
63 |
62
|
breq1d |
⊢ ( 𝑚 = 𝑠 → ( ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
64 |
61 63
|
raleqbidv |
⊢ ( 𝑚 = 𝑠 → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
65 |
64
|
rspcv |
⊢ ( 𝑠 ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |
66 |
65
|
imdistanri |
⊢ ( ( ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ∧ 𝑠 ∈ ℕ ) ) |
67 |
|
peano2nn |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℕ ) |
68 |
67
|
nnzd |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℤ ) |
69 |
|
uzid |
⊢ ( ( 𝑠 + 1 ) ∈ ℤ → ( 𝑠 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ) |
70 |
68 69
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑠 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) |
72 |
71
|
breq2d |
⊢ ( 𝑛 = ( 𝑠 + 1 ) → ( ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) ) |
73 |
72
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑠 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ) → ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) |
74 |
70 73
|
sylan2 |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑠 + 1 ) ) ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ∧ 𝑠 ∈ ℕ ) → ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) |
75 |
66 74
|
syl |
⊢ ( ( ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ∧ 𝑠 ∈ ℕ ) → ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) |
76 |
75
|
ralrimiva |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) → ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ) |
77 |
60 76
|
impbid1 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐹 : ℕ ⟶ 𝐴 ) → ( ∀ 𝑠 ∈ ℕ ( 𝐹 ‘ 𝑠 ) 𝑅 ( 𝐹 ‘ ( 𝑠 + 1 ) ) ↔ ∀ 𝑚 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐹 ‘ 𝑚 ) 𝑅 ( 𝐹 ‘ 𝑛 ) ) ) |