| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( p = ( m + 1 ) -> ( F ` p ) = ( F ` ( m + 1 ) ) ) | 
						
							| 2 | 1 | breq2d |  |-  ( p = ( m + 1 ) -> ( ( F ` m ) R ( F ` p ) <-> ( F ` m ) R ( F ` ( m + 1 ) ) ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( p = ( m + 1 ) -> ( ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` p ) ) <-> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` ( m + 1 ) ) ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( p = q -> ( F ` p ) = ( F ` q ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( p = q -> ( ( F ` m ) R ( F ` p ) <-> ( F ` m ) R ( F ` q ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( p = q -> ( ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` p ) ) <-> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` q ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( p = ( q + 1 ) -> ( F ` p ) = ( F ` ( q + 1 ) ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( p = ( q + 1 ) -> ( ( F ` m ) R ( F ` p ) <-> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( p = ( q + 1 ) -> ( ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` p ) ) <-> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( p = n -> ( F ` p ) = ( F ` n ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( p = n -> ( ( F ` m ) R ( F ` p ) <-> ( F ` m ) R ( F ` n ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( p = n -> ( ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` p ) ) <-> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` n ) ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( s = m -> ( F ` s ) = ( F ` m ) ) | 
						
							| 14 |  | fvoveq1 |  |-  ( s = m -> ( F ` ( s + 1 ) ) = ( F ` ( m + 1 ) ) ) | 
						
							| 15 | 13 14 | breq12d |  |-  ( s = m -> ( ( F ` s ) R ( F ` ( s + 1 ) ) <-> ( F ` m ) R ( F ` ( m + 1 ) ) ) ) | 
						
							| 16 | 15 | rspccva |  |-  ( ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) -> ( F ` m ) R ( F ` ( m + 1 ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` ( m + 1 ) ) ) | 
						
							| 18 | 17 | a1i |  |-  ( ( m + 1 ) e. ZZ -> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` ( m + 1 ) ) ) ) | 
						
							| 19 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 20 |  | elnnuz |  |-  ( ( m + 1 ) e. NN <-> ( m + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 21 | 19 20 | sylib |  |-  ( m e. NN -> ( m + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 22 |  | uztrn |  |-  ( ( q e. ( ZZ>= ` ( m + 1 ) ) /\ ( m + 1 ) e. ( ZZ>= ` 1 ) ) -> q e. ( ZZ>= ` 1 ) ) | 
						
							| 23 |  | elnnuz |  |-  ( q e. NN <-> q e. ( ZZ>= ` 1 ) ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ( q e. ( ZZ>= ` ( m + 1 ) ) /\ ( m + 1 ) e. ( ZZ>= ` 1 ) ) -> q e. NN ) | 
						
							| 25 | 24 | expcom |  |-  ( ( m + 1 ) e. ( ZZ>= ` 1 ) -> ( q e. ( ZZ>= ` ( m + 1 ) ) -> q e. NN ) ) | 
						
							| 26 | 21 25 | syl |  |-  ( m e. NN -> ( q e. ( ZZ>= ` ( m + 1 ) ) -> q e. NN ) ) | 
						
							| 27 | 26 | imdistani |  |-  ( ( m e. NN /\ q e. ( ZZ>= ` ( m + 1 ) ) ) -> ( m e. NN /\ q e. NN ) ) | 
						
							| 28 |  | fveq2 |  |-  ( s = q -> ( F ` s ) = ( F ` q ) ) | 
						
							| 29 |  | fvoveq1 |  |-  ( s = q -> ( F ` ( s + 1 ) ) = ( F ` ( q + 1 ) ) ) | 
						
							| 30 | 28 29 | breq12d |  |-  ( s = q -> ( ( F ` s ) R ( F ` ( s + 1 ) ) <-> ( F ` q ) R ( F ` ( q + 1 ) ) ) ) | 
						
							| 31 | 30 | rspccva |  |-  ( ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ q e. NN ) -> ( F ` q ) R ( F ` ( q + 1 ) ) ) | 
						
							| 32 | 31 | ad2ant2l |  |-  ( ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) /\ ( m e. NN /\ q e. NN ) ) -> ( F ` q ) R ( F ` ( q + 1 ) ) ) | 
						
							| 33 | 32 | ex |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) -> ( ( m e. NN /\ q e. NN ) -> ( F ` q ) R ( F ` ( q + 1 ) ) ) ) | 
						
							| 34 |  | ffvelcdm |  |-  ( ( F : NN --> A /\ m e. NN ) -> ( F ` m ) e. A ) | 
						
							| 35 | 34 | adantrr |  |-  ( ( F : NN --> A /\ ( m e. NN /\ q e. NN ) ) -> ( F ` m ) e. A ) | 
						
							| 36 |  | ffvelcdm |  |-  ( ( F : NN --> A /\ q e. NN ) -> ( F ` q ) e. A ) | 
						
							| 37 | 36 | adantrl |  |-  ( ( F : NN --> A /\ ( m e. NN /\ q e. NN ) ) -> ( F ` q ) e. A ) | 
						
							| 38 |  | peano2nn |  |-  ( q e. NN -> ( q + 1 ) e. NN ) | 
						
							| 39 |  | ffvelcdm |  |-  ( ( F : NN --> A /\ ( q + 1 ) e. NN ) -> ( F ` ( q + 1 ) ) e. A ) | 
						
							| 40 | 38 39 | sylan2 |  |-  ( ( F : NN --> A /\ q e. NN ) -> ( F ` ( q + 1 ) ) e. A ) | 
						
							| 41 | 40 | adantrl |  |-  ( ( F : NN --> A /\ ( m e. NN /\ q e. NN ) ) -> ( F ` ( q + 1 ) ) e. A ) | 
						
							| 42 | 35 37 41 | 3jca |  |-  ( ( F : NN --> A /\ ( m e. NN /\ q e. NN ) ) -> ( ( F ` m ) e. A /\ ( F ` q ) e. A /\ ( F ` ( q + 1 ) ) e. A ) ) | 
						
							| 43 |  | potr |  |-  ( ( R Po A /\ ( ( F ` m ) e. A /\ ( F ` q ) e. A /\ ( F ` ( q + 1 ) ) e. A ) ) -> ( ( ( F ` m ) R ( F ` q ) /\ ( F ` q ) R ( F ` ( q + 1 ) ) ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) | 
						
							| 44 | 43 | expcomd |  |-  ( ( R Po A /\ ( ( F ` m ) e. A /\ ( F ` q ) e. A /\ ( F ` ( q + 1 ) ) e. A ) ) -> ( ( F ` q ) R ( F ` ( q + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( R Po A -> ( ( ( F ` m ) e. A /\ ( F ` q ) e. A /\ ( F ` ( q + 1 ) ) e. A ) -> ( ( F ` q ) R ( F ` ( q + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) ) | 
						
							| 46 | 42 45 | syl5 |  |-  ( R Po A -> ( ( F : NN --> A /\ ( m e. NN /\ q e. NN ) ) -> ( ( F ` q ) R ( F ` ( q + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) ) | 
						
							| 47 | 46 | expdimp |  |-  ( ( R Po A /\ F : NN --> A ) -> ( ( m e. NN /\ q e. NN ) -> ( ( F ` q ) R ( F ` ( q + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) -> ( ( m e. NN /\ q e. NN ) -> ( ( F ` q ) R ( F ` ( q + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) ) | 
						
							| 49 | 33 48 | mpdd |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) -> ( ( m e. NN /\ q e. NN ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 50 | 27 49 | syl5 |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) -> ( ( m e. NN /\ q e. ( ZZ>= ` ( m + 1 ) ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 51 | 50 | expdimp |  |-  ( ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) /\ m e. NN ) -> ( q e. ( ZZ>= ` ( m + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 52 | 51 | anasss |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( q e. ( ZZ>= ` ( m + 1 ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 53 | 52 | com12 |  |-  ( q e. ( ZZ>= ` ( m + 1 ) ) -> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( ( F ` m ) R ( F ` q ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 54 | 53 | a2d |  |-  ( q e. ( ZZ>= ` ( m + 1 ) ) -> ( ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` q ) ) -> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` ( q + 1 ) ) ) ) ) | 
						
							| 55 | 3 6 9 12 18 54 | uzind4 |  |-  ( n e. ( ZZ>= ` ( m + 1 ) ) -> ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( F ` m ) R ( F ` n ) ) ) | 
						
							| 56 | 55 | com12 |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> ( n e. ( ZZ>= ` ( m + 1 ) ) -> ( F ` m ) R ( F ` n ) ) ) | 
						
							| 57 | 56 | ralrimiv |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) /\ m e. NN ) ) -> A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) ) | 
						
							| 58 | 57 | anassrs |  |-  ( ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) /\ m e. NN ) -> A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) ) | 
						
							| 59 | 58 | ralrimiva |  |-  ( ( ( R Po A /\ F : NN --> A ) /\ A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) -> A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( R Po A /\ F : NN --> A ) -> ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) -> A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) ) ) | 
						
							| 61 |  | fvoveq1 |  |-  ( m = s -> ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( s + 1 ) ) ) | 
						
							| 62 |  | fveq2 |  |-  ( m = s -> ( F ` m ) = ( F ` s ) ) | 
						
							| 63 | 62 | breq1d |  |-  ( m = s -> ( ( F ` m ) R ( F ` n ) <-> ( F ` s ) R ( F ` n ) ) ) | 
						
							| 64 | 61 63 | raleqbidv |  |-  ( m = s -> ( A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) <-> A. n e. ( ZZ>= ` ( s + 1 ) ) ( F ` s ) R ( F ` n ) ) ) | 
						
							| 65 | 64 | rspcv |  |-  ( s e. NN -> ( A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) -> A. n e. ( ZZ>= ` ( s + 1 ) ) ( F ` s ) R ( F ` n ) ) ) | 
						
							| 66 | 65 | imdistanri |  |-  ( ( A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) /\ s e. NN ) -> ( A. n e. ( ZZ>= ` ( s + 1 ) ) ( F ` s ) R ( F ` n ) /\ s e. NN ) ) | 
						
							| 67 |  | peano2nn |  |-  ( s e. NN -> ( s + 1 ) e. NN ) | 
						
							| 68 | 67 | nnzd |  |-  ( s e. NN -> ( s + 1 ) e. ZZ ) | 
						
							| 69 |  | uzid |  |-  ( ( s + 1 ) e. ZZ -> ( s + 1 ) e. ( ZZ>= ` ( s + 1 ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( s e. NN -> ( s + 1 ) e. ( ZZ>= ` ( s + 1 ) ) ) | 
						
							| 71 |  | fveq2 |  |-  ( n = ( s + 1 ) -> ( F ` n ) = ( F ` ( s + 1 ) ) ) | 
						
							| 72 | 71 | breq2d |  |-  ( n = ( s + 1 ) -> ( ( F ` s ) R ( F ` n ) <-> ( F ` s ) R ( F ` ( s + 1 ) ) ) ) | 
						
							| 73 | 72 | rspccva |  |-  ( ( A. n e. ( ZZ>= ` ( s + 1 ) ) ( F ` s ) R ( F ` n ) /\ ( s + 1 ) e. ( ZZ>= ` ( s + 1 ) ) ) -> ( F ` s ) R ( F ` ( s + 1 ) ) ) | 
						
							| 74 | 70 73 | sylan2 |  |-  ( ( A. n e. ( ZZ>= ` ( s + 1 ) ) ( F ` s ) R ( F ` n ) /\ s e. NN ) -> ( F ` s ) R ( F ` ( s + 1 ) ) ) | 
						
							| 75 | 66 74 | syl |  |-  ( ( A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) /\ s e. NN ) -> ( F ` s ) R ( F ` ( s + 1 ) ) ) | 
						
							| 76 | 75 | ralrimiva |  |-  ( A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) -> A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) ) | 
						
							| 77 | 60 76 | impbid1 |  |-  ( ( R Po A /\ F : NN --> A ) -> ( A. s e. NN ( F ` s ) R ( F ` ( s + 1 ) ) <-> A. m e. NN A. n e. ( ZZ>= ` ( m + 1 ) ) ( F ` m ) R ( F ` n ) ) ) |