Step |
Hyp |
Ref |
Expression |
1 |
|
sdc.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
sdc.2 |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
sdc.3 |
⊢ ( 𝑛 = 𝑀 → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
sdc.4 |
⊢ ( 𝑛 = 𝑘 → ( 𝜓 ↔ 𝜃 ) ) |
5 |
|
sdc.5 |
⊢ ( ( 𝑔 = ℎ ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓 ↔ 𝜎 ) ) |
6 |
|
sdc.6 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
sdc.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
sdc.8 |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) |
9 |
|
sdc.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
10 |
|
sdc.10 |
⊢ 𝐽 = { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } |
11 |
|
sdc.11 |
⊢ 𝐹 = ( 𝑤 ∈ 𝑍 , 𝑥 ∈ 𝐽 ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
12 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
13 |
|
simpl |
⊢ ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) → 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) |
14 |
|
ovex |
⊢ ( 𝑀 ... 𝑛 ) ∈ V |
15 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑀 ... 𝑛 ) ∈ V ) → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ↔ 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) |
16 |
6 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ↔ 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) |
17 |
13 16
|
syl5ibr |
⊢ ( 𝜑 → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) → 𝑔 ∈ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ) ) |
18 |
17
|
abssdv |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ⊆ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ) |
19 |
|
ovex |
⊢ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ∈ V |
20 |
|
ssexg |
⊢ ( ( { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ⊆ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ∧ ( 𝐴 ↑m ( 𝑀 ... 𝑛 ) ) ∈ V ) → { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) |
22 |
21
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) |
23 |
|
abrexex2g |
⊢ ( ( 𝑍 ∈ V ∧ ∀ 𝑛 ∈ 𝑍 { 𝑔 ∣ ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) → { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) |
24 |
12 22 23
|
sylancr |
⊢ ( 𝜑 → { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ∈ V ) |
25 |
10 24
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝐽 ∈ V ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑀 ∈ ℤ ) |
28 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
30 |
29 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑀 ∈ 𝑍 ) |
31 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑔 : { 𝑀 } ⟶ 𝐴 ) |
32 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
33 |
27 32
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
34 |
33
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ↔ 𝑔 : { 𝑀 } ⟶ 𝐴 ) ) |
35 |
31 34
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝜏 ) |
37 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
38 |
37
|
feq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) ) |
39 |
38 3
|
anbi12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ( 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ 𝜏 ) ) ) |
40 |
39
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ 𝜏 ) ) → ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ) |
41 |
30 35 36 40
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ) |
42 |
10
|
abeq2i |
⊢ ( 𝑔 ∈ 𝐽 ↔ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝑔 ∈ 𝐽 ) |
44 |
1
|
peano2uzs |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝑘 + 1 ) ∈ 𝑍 ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → ( 𝑘 + 1 ) ∈ 𝑍 ) |
46 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) |
47 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → 𝜎 ) |
48 |
|
vex |
⊢ ℎ ∈ V |
49 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
50 |
5
|
a1i |
⊢ ( 𝜑 → ( ( 𝑔 = ℎ ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓 ↔ 𝜎 ) ) ) |
51 |
48 49 50
|
sbc2iedv |
⊢ ( 𝜑 → ( [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ↔ 𝜎 ) ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → ( [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ↔ 𝜎 ) ) |
53 |
47 52
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) |
54 |
|
nfv |
⊢ Ⅎ 𝑛 ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 |
55 |
|
nfcv |
⊢ Ⅎ 𝑛 ℎ |
56 |
|
nfsbc1v |
⊢ Ⅎ 𝑛 [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 |
57 |
55 56
|
nfsbcw |
⊢ Ⅎ 𝑛 [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 |
58 |
54 57
|
nfan |
⊢ Ⅎ 𝑛 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) |
59 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ) |
60 |
59
|
feq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) ) |
61 |
|
sbceq1a |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝜓 ↔ [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) ) |
62 |
61
|
sbcbidv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( [ ℎ / 𝑔 ] 𝜓 ↔ [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) ) |
63 |
60 62
|
anbi12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ↔ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) ) ) |
64 |
58 63
|
rspce |
⊢ ( ( ( 𝑘 + 1 ) ∈ 𝑍 ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] [ ( 𝑘 + 1 ) / 𝑛 ] 𝜓 ) ) → ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) |
65 |
45 46 53 64
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) |
66 |
10
|
eleq2i |
⊢ ( ℎ ∈ 𝐽 ↔ ℎ ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ) |
67 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑍 |
68 |
|
nfv |
⊢ Ⅎ 𝑔 ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 |
69 |
|
nfsbc1v |
⊢ Ⅎ 𝑔 [ ℎ / 𝑔 ] 𝜓 |
70 |
68 69
|
nfan |
⊢ Ⅎ 𝑔 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) |
71 |
67 70
|
nfrex |
⊢ Ⅎ 𝑔 ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) |
72 |
|
feq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) |
73 |
|
sbceq1a |
⊢ ( 𝑔 = ℎ → ( 𝜓 ↔ [ ℎ / 𝑔 ] 𝜓 ) ) |
74 |
72 73
|
anbi12d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) ) |
75 |
74
|
rexbidv |
⊢ ( 𝑔 = ℎ → ( ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) ) |
76 |
71 48 75
|
elabf |
⊢ ( ℎ ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↔ ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) |
77 |
66 76
|
bitri |
⊢ ( ℎ ∈ 𝐽 ↔ ∃ 𝑛 ∈ 𝑍 ( ℎ : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ℎ / 𝑔 ] 𝜓 ) ) |
78 |
65 77
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) → ℎ ∈ 𝐽 ) |
79 |
78
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) → ℎ ∈ 𝐽 ) ) |
80 |
79
|
abssdv |
⊢ ( 𝜑 → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ 𝐽 ) |
81 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ 𝐽 ) |
82 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → 𝐽 ∈ V ) |
83 |
|
elpw2g |
⊢ ( 𝐽 ∈ V → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ 𝒫 𝐽 ↔ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ 𝐽 ) ) |
84 |
82 83
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ 𝒫 𝐽 ↔ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ 𝐽 ) ) |
85 |
81 84
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ 𝒫 𝐽 ) |
86 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) ) |
87 |
86
|
feq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) ) |
88 |
87 4
|
anbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) ) ) |
89 |
88
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) ) |
90 |
9
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ 𝑘 ∈ 𝑍 ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
91 |
|
rexcom4 |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) |
92 |
90 91
|
syl6ib |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
93 |
89 92
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) → ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
94 |
93
|
ss2abdv |
⊢ ( 𝜑 → { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ⊆ { 𝑔 ∣ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
95 |
10 94
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ { 𝑔 ∣ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
96 |
95
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ { 𝑔 ∣ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
97 |
|
vex |
⊢ 𝑥 ∈ V |
98 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ↔ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
99 |
98
|
3anbi2d |
⊢ ( 𝑔 = 𝑥 → ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
100 |
99
|
rexbidv |
⊢ ( 𝑔 = 𝑥 → ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
101 |
100
|
exbidv |
⊢ ( 𝑔 = 𝑥 → ( ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
102 |
97 101
|
elab |
⊢ ( 𝑥 ∈ { 𝑔 ∣ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ↔ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) |
103 |
96 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) |
104 |
|
abn0 |
⊢ ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ≠ ∅ ↔ ∃ ℎ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) |
105 |
103 104
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ≠ ∅ ) |
106 |
105
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ≠ ∅ ) |
107 |
|
eldifsn |
⊢ ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ ( 𝒫 𝐽 ∖ { ∅ } ) ↔ ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ 𝒫 𝐽 ∧ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ≠ ∅ ) ) |
108 |
85 106 107
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ 𝑥 ∈ 𝐽 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
109 |
108
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑥 ∈ 𝐽 ) ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
110 |
109
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ∀ 𝑤 ∈ 𝑍 ∀ 𝑥 ∈ 𝐽 { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
111 |
11
|
fmpo |
⊢ ( ∀ 𝑤 ∈ 𝑍 ∀ 𝑥 ∈ 𝐽 { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ ( 𝒫 𝐽 ∖ { ∅ } ) ↔ 𝐹 : ( 𝑍 × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
112 |
110 111
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝐹 : ( 𝑍 × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
113 |
7
|
iftrued |
⊢ ( 𝜑 → if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) = 𝑀 ) |
114 |
113
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
115 |
114 1
|
eqtr4di |
⊢ ( 𝜑 → ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑍 ) |
116 |
115
|
xpeq1d |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) × 𝐽 ) = ( 𝑍 × 𝐽 ) ) |
117 |
116
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : ( ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ↔ 𝐹 : ( 𝑍 × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) ) |
118 |
117
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐹 : ( 𝑍 × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) → 𝐹 : ( ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
119 |
112 118
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → 𝐹 : ( ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) |
120 |
|
0z |
⊢ 0 ∈ ℤ |
121 |
120
|
elimel |
⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
122 |
|
eqid |
⊢ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
123 |
121 122
|
axdc4uz |
⊢ ( ( 𝐽 ∈ V ∧ 𝑔 ∈ 𝐽 ∧ 𝐹 : ( ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) × 𝐽 ) ⟶ ( 𝒫 𝐽 ∖ { ∅ } ) ) → ∃ 𝑗 ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ∧ ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) |
124 |
26 43 119 123
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ∃ 𝑗 ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ∧ ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) |
125 |
27
|
iftrued |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) = 𝑀 ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
127 |
126 1
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑍 ) |
128 |
127
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ↔ 𝑗 : 𝑍 ⟶ 𝐽 ) ) |
129 |
89
|
abbii |
⊢ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } |
130 |
10 129
|
eqtri |
⊢ 𝐽 = { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } |
131 |
|
feq3 |
⊢ ( 𝐽 = { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } → ( 𝑗 : 𝑍 ⟶ 𝐽 ↔ 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ) ) |
132 |
130 131
|
ax-mp |
⊢ ( 𝑗 : 𝑍 ⟶ 𝐽 ↔ 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ) |
133 |
128 132
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ↔ 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ) ) |
134 |
125
|
fveqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ↔ ( 𝑗 ‘ 𝑀 ) = 𝑔 ) ) |
135 |
127
|
raleqdv |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) |
136 |
133 134 135
|
3anbi123d |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ∧ ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ↔ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) ) |
137 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝐴 ∈ 𝑉 ) |
138 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝑀 ∈ ℤ ) |
139 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) |
140 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝜑 ) |
141 |
140 9
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
142 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) |
143 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
144 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑍 |
145 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) |
146 |
145
|
nfab |
⊢ Ⅎ 𝑘 { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } |
147 |
143 144 146
|
nff |
⊢ Ⅎ 𝑘 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } |
148 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑗 ‘ 𝑀 ) = 𝑔 |
149 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
150 |
130 146
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐽 |
151 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) |
152 |
151
|
nfab |
⊢ Ⅎ 𝑘 { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } |
153 |
144 150 152
|
nfmpo |
⊢ Ⅎ 𝑘 ( 𝑤 ∈ 𝑍 , 𝑥 ∈ 𝐽 ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
154 |
11 153
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐹 |
155 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑗 ‘ 𝑚 ) |
156 |
149 154 155
|
nfov |
⊢ Ⅎ 𝑘 ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) |
157 |
156
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) |
158 |
144 157
|
nfralw |
⊢ Ⅎ 𝑘 ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) |
159 |
147 148 158
|
nf3an |
⊢ Ⅎ 𝑘 ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) |
160 |
142 159
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) |
161 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ) |
162 |
161 132
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝑗 : 𝑍 ⟶ 𝐽 ) |
163 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → 𝑔 : { 𝑀 } ⟶ 𝐴 ) |
164 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ( 𝑗 ‘ 𝑀 ) = 𝑔 ) |
165 |
138 32
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
166 |
164 165
|
feq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ( ( 𝑗 ‘ 𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ↔ 𝑔 : { 𝑀 } ⟶ 𝐴 ) ) |
167 |
163 166
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ( 𝑗 ‘ 𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) |
168 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) |
169 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑤 → ( 𝑗 ‘ ( 𝑚 + 1 ) ) = ( 𝑗 ‘ ( 𝑤 + 1 ) ) ) |
170 |
|
id |
⊢ ( 𝑚 = 𝑤 → 𝑚 = 𝑤 ) |
171 |
|
fveq2 |
⊢ ( 𝑚 = 𝑤 → ( 𝑗 ‘ 𝑚 ) = ( 𝑗 ‘ 𝑤 ) ) |
172 |
170 171
|
oveq12d |
⊢ ( 𝑚 = 𝑤 → ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) = ( 𝑤 𝐹 ( 𝑗 ‘ 𝑤 ) ) ) |
173 |
169 172
|
eleq12d |
⊢ ( 𝑚 = 𝑤 → ( ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ↔ ( 𝑗 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝑗 ‘ 𝑤 ) ) ) ) |
174 |
173
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝑗 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝑗 ‘ 𝑤 ) ) ) |
175 |
168 174
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝑗 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝑗 ‘ 𝑤 ) ) ) |
176 |
1 2 3 4 5 137 138 139 141 10 11 160 162 167 175
|
sdclem2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) ∧ ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |
177 |
176
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ( 𝑗 : 𝑍 ⟶ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ∧ ( 𝑗 ‘ 𝑀 ) = 𝑔 ∧ ∀ 𝑚 ∈ 𝑍 ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) ) |
178 |
136 177
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ∧ ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) ) |
179 |
178
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ( ∃ 𝑗 ( 𝑗 : ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ⟶ 𝐽 ∧ ( 𝑗 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = 𝑔 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ( 𝑗 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑗 ‘ 𝑚 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) ) |
180 |
124 179
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |
181 |
8 180
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |