| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdc.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
sdc.2 |
|- ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) ) |
| 3 |
|
sdc.3 |
|- ( n = M -> ( ps <-> ta ) ) |
| 4 |
|
sdc.4 |
|- ( n = k -> ( ps <-> th ) ) |
| 5 |
|
sdc.5 |
|- ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) ) |
| 6 |
|
sdc.6 |
|- ( ph -> A e. V ) |
| 7 |
|
sdc.7 |
|- ( ph -> M e. ZZ ) |
| 8 |
|
sdc.8 |
|- ( ph -> E. g ( g : { M } --> A /\ ta ) ) |
| 9 |
|
sdc.9 |
|- ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 10 |
|
sdc.10 |
|- J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } |
| 11 |
|
sdc.11 |
|- F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
| 12 |
1
|
fvexi |
|- Z e. _V |
| 13 |
|
simpl |
|- ( ( g : ( M ... n ) --> A /\ ps ) -> g : ( M ... n ) --> A ) |
| 14 |
|
ovex |
|- ( M ... n ) e. _V |
| 15 |
|
elmapg |
|- ( ( A e. V /\ ( M ... n ) e. _V ) -> ( g e. ( A ^m ( M ... n ) ) <-> g : ( M ... n ) --> A ) ) |
| 16 |
6 14 15
|
sylancl |
|- ( ph -> ( g e. ( A ^m ( M ... n ) ) <-> g : ( M ... n ) --> A ) ) |
| 17 |
13 16
|
imbitrrid |
|- ( ph -> ( ( g : ( M ... n ) --> A /\ ps ) -> g e. ( A ^m ( M ... n ) ) ) ) |
| 18 |
17
|
abssdv |
|- ( ph -> { g | ( g : ( M ... n ) --> A /\ ps ) } C_ ( A ^m ( M ... n ) ) ) |
| 19 |
|
ovex |
|- ( A ^m ( M ... n ) ) e. _V |
| 20 |
|
ssexg |
|- ( ( { g | ( g : ( M ... n ) --> A /\ ps ) } C_ ( A ^m ( M ... n ) ) /\ ( A ^m ( M ... n ) ) e. _V ) -> { g | ( g : ( M ... n ) --> A /\ ps ) } e. _V ) |
| 21 |
18 19 20
|
sylancl |
|- ( ph -> { g | ( g : ( M ... n ) --> A /\ ps ) } e. _V ) |
| 22 |
21
|
ralrimivw |
|- ( ph -> A. n e. Z { g | ( g : ( M ... n ) --> A /\ ps ) } e. _V ) |
| 23 |
|
abrexex2g |
|- ( ( Z e. _V /\ A. n e. Z { g | ( g : ( M ... n ) --> A /\ ps ) } e. _V ) -> { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } e. _V ) |
| 24 |
12 22 23
|
sylancr |
|- ( ph -> { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } e. _V ) |
| 25 |
10 24
|
eqeltrid |
|- ( ph -> J e. _V ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> J e. _V ) |
| 27 |
7
|
adantr |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> M e. ZZ ) |
| 28 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 29 |
27 28
|
syl |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> M e. ( ZZ>= ` M ) ) |
| 30 |
29 1
|
eleqtrrdi |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> M e. Z ) |
| 31 |
|
simprl |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> g : { M } --> A ) |
| 32 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
| 33 |
27 32
|
syl |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( M ... M ) = { M } ) |
| 34 |
33
|
feq2d |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( g : ( M ... M ) --> A <-> g : { M } --> A ) ) |
| 35 |
31 34
|
mpbird |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> g : ( M ... M ) --> A ) |
| 36 |
|
simprr |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ta ) |
| 37 |
|
oveq2 |
|- ( n = M -> ( M ... n ) = ( M ... M ) ) |
| 38 |
37
|
feq2d |
|- ( n = M -> ( g : ( M ... n ) --> A <-> g : ( M ... M ) --> A ) ) |
| 39 |
38 3
|
anbi12d |
|- ( n = M -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( g : ( M ... M ) --> A /\ ta ) ) ) |
| 40 |
39
|
rspcev |
|- ( ( M e. Z /\ ( g : ( M ... M ) --> A /\ ta ) ) -> E. n e. Z ( g : ( M ... n ) --> A /\ ps ) ) |
| 41 |
30 35 36 40
|
syl12anc |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> E. n e. Z ( g : ( M ... n ) --> A /\ ps ) ) |
| 42 |
10
|
eqabri |
|- ( g e. J <-> E. n e. Z ( g : ( M ... n ) --> A /\ ps ) ) |
| 43 |
41 42
|
sylibr |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> g e. J ) |
| 44 |
1
|
peano2uzs |
|- ( k e. Z -> ( k + 1 ) e. Z ) |
| 45 |
44
|
ad2antlr |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> ( k + 1 ) e. Z ) |
| 46 |
|
simpr1 |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> h : ( M ... ( k + 1 ) ) --> A ) |
| 47 |
|
simpr3 |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> si ) |
| 48 |
|
vex |
|- h e. _V |
| 49 |
|
ovex |
|- ( k + 1 ) e. _V |
| 50 |
5
|
a1i |
|- ( ph -> ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) ) ) |
| 51 |
48 49 50
|
sbc2iedv |
|- ( ph -> ( [. h / g ]. [. ( k + 1 ) / n ]. ps <-> si ) ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> ( [. h / g ]. [. ( k + 1 ) / n ]. ps <-> si ) ) |
| 53 |
47 52
|
mpbird |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> [. h / g ]. [. ( k + 1 ) / n ]. ps ) |
| 54 |
|
nfv |
|- F/ n h : ( M ... ( k + 1 ) ) --> A |
| 55 |
|
nfcv |
|- F/_ n h |
| 56 |
|
nfsbc1v |
|- F/ n [. ( k + 1 ) / n ]. ps |
| 57 |
55 56
|
nfsbcw |
|- F/ n [. h / g ]. [. ( k + 1 ) / n ]. ps |
| 58 |
54 57
|
nfan |
|- F/ n ( h : ( M ... ( k + 1 ) ) --> A /\ [. h / g ]. [. ( k + 1 ) / n ]. ps ) |
| 59 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( M ... n ) = ( M ... ( k + 1 ) ) ) |
| 60 |
59
|
feq2d |
|- ( n = ( k + 1 ) -> ( h : ( M ... n ) --> A <-> h : ( M ... ( k + 1 ) ) --> A ) ) |
| 61 |
|
sbceq1a |
|- ( n = ( k + 1 ) -> ( ps <-> [. ( k + 1 ) / n ]. ps ) ) |
| 62 |
61
|
sbcbidv |
|- ( n = ( k + 1 ) -> ( [. h / g ]. ps <-> [. h / g ]. [. ( k + 1 ) / n ]. ps ) ) |
| 63 |
60 62
|
anbi12d |
|- ( n = ( k + 1 ) -> ( ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ [. h / g ]. [. ( k + 1 ) / n ]. ps ) ) ) |
| 64 |
58 63
|
rspce |
|- ( ( ( k + 1 ) e. Z /\ ( h : ( M ... ( k + 1 ) ) --> A /\ [. h / g ]. [. ( k + 1 ) / n ]. ps ) ) -> E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) |
| 65 |
45 46 53 64
|
syl12anc |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) |
| 66 |
10
|
eleq2i |
|- ( h e. J <-> h e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } ) |
| 67 |
|
nfcv |
|- F/_ g Z |
| 68 |
|
nfv |
|- F/ g h : ( M ... n ) --> A |
| 69 |
|
nfsbc1v |
|- F/ g [. h / g ]. ps |
| 70 |
68 69
|
nfan |
|- F/ g ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) |
| 71 |
67 70
|
nfrexw |
|- F/ g E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) |
| 72 |
|
feq1 |
|- ( g = h -> ( g : ( M ... n ) --> A <-> h : ( M ... n ) --> A ) ) |
| 73 |
|
sbceq1a |
|- ( g = h -> ( ps <-> [. h / g ]. ps ) ) |
| 74 |
72 73
|
anbi12d |
|- ( g = h -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) ) |
| 75 |
74
|
rexbidv |
|- ( g = h -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) ) |
| 76 |
71 48 75
|
elabf |
|- ( h e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } <-> E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) |
| 77 |
66 76
|
bitri |
|- ( h e. J <-> E. n e. Z ( h : ( M ... n ) --> A /\ [. h / g ]. ps ) ) |
| 78 |
65 77
|
sylibr |
|- ( ( ( ph /\ k e. Z ) /\ ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) -> h e. J ) |
| 79 |
78
|
rexlimdva2 |
|- ( ph -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) -> h e. J ) ) |
| 80 |
79
|
abssdv |
|- ( ph -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } C_ J ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } C_ J ) |
| 82 |
25
|
ad2antrr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> J e. _V ) |
| 83 |
|
elpw2g |
|- ( J e. _V -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ~P J <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } C_ J ) ) |
| 84 |
82 83
|
syl |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ~P J <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } C_ J ) ) |
| 85 |
81 84
|
mpbird |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ~P J ) |
| 86 |
|
oveq2 |
|- ( n = k -> ( M ... n ) = ( M ... k ) ) |
| 87 |
86
|
feq2d |
|- ( n = k -> ( g : ( M ... n ) --> A <-> g : ( M ... k ) --> A ) ) |
| 88 |
87 4
|
anbi12d |
|- ( n = k -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( g : ( M ... k ) --> A /\ th ) ) ) |
| 89 |
88
|
cbvrexvw |
|- ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. k e. Z ( g : ( M ... k ) --> A /\ th ) ) |
| 90 |
9
|
reximdva |
|- ( ph -> ( E. k e. Z ( g : ( M ... k ) --> A /\ th ) -> E. k e. Z E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 91 |
|
rexcom4 |
|- ( E. k e. Z E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) <-> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) |
| 92 |
90 91
|
imbitrdi |
|- ( ph -> ( E. k e. Z ( g : ( M ... k ) --> A /\ th ) -> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 93 |
89 92
|
biimtrid |
|- ( ph -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) -> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 94 |
93
|
ss2abdv |
|- ( ph -> { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } C_ { g | E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) } ) |
| 95 |
10 94
|
eqsstrid |
|- ( ph -> J C_ { g | E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) } ) |
| 96 |
95
|
sselda |
|- ( ( ph /\ x e. J ) -> x e. { g | E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) } ) |
| 97 |
|
vex |
|- x e. _V |
| 98 |
|
eqeq1 |
|- ( g = x -> ( g = ( h |` ( M ... k ) ) <-> x = ( h |` ( M ... k ) ) ) ) |
| 99 |
98
|
3anbi2d |
|- ( g = x -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 100 |
99
|
rexbidv |
|- ( g = x -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) <-> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 101 |
100
|
exbidv |
|- ( g = x -> ( E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) <-> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 102 |
97 101
|
elab |
|- ( x e. { g | E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) } <-> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) |
| 103 |
96 102
|
sylib |
|- ( ( ph /\ x e. J ) -> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) |
| 104 |
|
abn0 |
|- ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } =/= (/) <-> E. h E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) ) |
| 105 |
103 104
|
sylibr |
|- ( ( ph /\ x e. J ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } =/= (/) ) |
| 106 |
105
|
adantlr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } =/= (/) ) |
| 107 |
|
eldifsn |
|- ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ( ~P J \ { (/) } ) <-> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ~P J /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } =/= (/) ) ) |
| 108 |
85 106 107
|
sylanbrc |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ x e. J ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ( ~P J \ { (/) } ) ) |
| 109 |
108
|
adantrl |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( w e. Z /\ x e. J ) ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ( ~P J \ { (/) } ) ) |
| 110 |
109
|
ralrimivva |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> A. w e. Z A. x e. J { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ( ~P J \ { (/) } ) ) |
| 111 |
11
|
fmpo |
|- ( A. w e. Z A. x e. J { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. ( ~P J \ { (/) } ) <-> F : ( Z X. J ) --> ( ~P J \ { (/) } ) ) |
| 112 |
110 111
|
sylib |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> F : ( Z X. J ) --> ( ~P J \ { (/) } ) ) |
| 113 |
7
|
iftrued |
|- ( ph -> if ( M e. ZZ , M , 0 ) = M ) |
| 114 |
113
|
fveq2d |
|- ( ph -> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) = ( ZZ>= ` M ) ) |
| 115 |
114 1
|
eqtr4di |
|- ( ph -> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) = Z ) |
| 116 |
115
|
xpeq1d |
|- ( ph -> ( ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) X. J ) = ( Z X. J ) ) |
| 117 |
116
|
feq2d |
|- ( ph -> ( F : ( ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) X. J ) --> ( ~P J \ { (/) } ) <-> F : ( Z X. J ) --> ( ~P J \ { (/) } ) ) ) |
| 118 |
117
|
biimpar |
|- ( ( ph /\ F : ( Z X. J ) --> ( ~P J \ { (/) } ) ) -> F : ( ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) X. J ) --> ( ~P J \ { (/) } ) ) |
| 119 |
112 118
|
syldan |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> F : ( ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) X. J ) --> ( ~P J \ { (/) } ) ) |
| 120 |
|
0z |
|- 0 e. ZZ |
| 121 |
120
|
elimel |
|- if ( M e. ZZ , M , 0 ) e. ZZ |
| 122 |
|
eqid |
|- ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
| 123 |
121 122
|
axdc4uz |
|- ( ( J e. _V /\ g e. J /\ F : ( ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) X. J ) --> ( ~P J \ { (/) } ) ) -> E. j ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J /\ ( j ` if ( M e. ZZ , M , 0 ) ) = g /\ A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) |
| 124 |
26 43 119 123
|
syl3anc |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> E. j ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J /\ ( j ` if ( M e. ZZ , M , 0 ) ) = g /\ A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) |
| 125 |
27
|
iftrued |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> if ( M e. ZZ , M , 0 ) = M ) |
| 126 |
125
|
fveq2d |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) = ( ZZ>= ` M ) ) |
| 127 |
126 1
|
eqtr4di |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) = Z ) |
| 128 |
127
|
feq2d |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J <-> j : Z --> J ) ) |
| 129 |
89
|
abbii |
|- { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } = { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } |
| 130 |
10 129
|
eqtri |
|- J = { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } |
| 131 |
|
feq3 |
|- ( J = { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } -> ( j : Z --> J <-> j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } ) ) |
| 132 |
130 131
|
ax-mp |
|- ( j : Z --> J <-> j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } ) |
| 133 |
128 132
|
bitrdi |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J <-> j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } ) ) |
| 134 |
125
|
fveqeq2d |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ( j ` if ( M e. ZZ , M , 0 ) ) = g <-> ( j ` M ) = g ) ) |
| 135 |
127
|
raleqdv |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) <-> A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) |
| 136 |
133 134 135
|
3anbi123d |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J /\ ( j ` if ( M e. ZZ , M , 0 ) ) = g /\ A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) <-> ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) ) |
| 137 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> A e. V ) |
| 138 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> M e. ZZ ) |
| 139 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> E. g ( g : { M } --> A /\ ta ) ) |
| 140 |
|
simpll |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> ph ) |
| 141 |
140 9
|
sylan |
|- ( ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 142 |
|
nfv |
|- F/ k ( ph /\ ( g : { M } --> A /\ ta ) ) |
| 143 |
|
nfcv |
|- F/_ k j |
| 144 |
|
nfcv |
|- F/_ k Z |
| 145 |
|
nfre1 |
|- F/ k E. k e. Z ( g : ( M ... k ) --> A /\ th ) |
| 146 |
145
|
nfab |
|- F/_ k { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } |
| 147 |
143 144 146
|
nff |
|- F/ k j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } |
| 148 |
|
nfv |
|- F/ k ( j ` M ) = g |
| 149 |
|
nfcv |
|- F/_ k m |
| 150 |
130 146
|
nfcxfr |
|- F/_ k J |
| 151 |
|
nfre1 |
|- F/ k E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) |
| 152 |
151
|
nfab |
|- F/_ k { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } |
| 153 |
144 150 152
|
nfmpo |
|- F/_ k ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
| 154 |
11 153
|
nfcxfr |
|- F/_ k F |
| 155 |
|
nfcv |
|- F/_ k ( j ` m ) |
| 156 |
149 154 155
|
nfov |
|- F/_ k ( m F ( j ` m ) ) |
| 157 |
156
|
nfel2 |
|- F/ k ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) |
| 158 |
144 157
|
nfralw |
|- F/ k A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) |
| 159 |
147 148 158
|
nf3an |
|- F/ k ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) |
| 160 |
142 159
|
nfan |
|- F/ k ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) |
| 161 |
|
simpr1 |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } ) |
| 162 |
161 132
|
sylibr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> j : Z --> J ) |
| 163 |
31
|
adantr |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> g : { M } --> A ) |
| 164 |
|
simpr2 |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> ( j ` M ) = g ) |
| 165 |
138 32
|
syl |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> ( M ... M ) = { M } ) |
| 166 |
164 165
|
feq12d |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> ( ( j ` M ) : ( M ... M ) --> A <-> g : { M } --> A ) ) |
| 167 |
163 166
|
mpbird |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> ( j ` M ) : ( M ... M ) --> A ) |
| 168 |
|
simpr3 |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) |
| 169 |
|
fvoveq1 |
|- ( m = w -> ( j ` ( m + 1 ) ) = ( j ` ( w + 1 ) ) ) |
| 170 |
|
id |
|- ( m = w -> m = w ) |
| 171 |
|
fveq2 |
|- ( m = w -> ( j ` m ) = ( j ` w ) ) |
| 172 |
170 171
|
oveq12d |
|- ( m = w -> ( m F ( j ` m ) ) = ( w F ( j ` w ) ) ) |
| 173 |
169 172
|
eleq12d |
|- ( m = w -> ( ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) <-> ( j ` ( w + 1 ) ) e. ( w F ( j ` w ) ) ) ) |
| 174 |
173
|
rspccva |
|- ( ( A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) /\ w e. Z ) -> ( j ` ( w + 1 ) ) e. ( w F ( j ` w ) ) ) |
| 175 |
168 174
|
sylan |
|- ( ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) /\ w e. Z ) -> ( j ` ( w + 1 ) ) e. ( w F ( j ` w ) ) ) |
| 176 |
1 2 3 4 5 137 138 139 141 10 11 160 162 167 175
|
sdclem2 |
|- ( ( ( ph /\ ( g : { M } --> A /\ ta ) ) /\ ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |
| 177 |
176
|
ex |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ( j : Z --> { g | E. k e. Z ( g : ( M ... k ) --> A /\ th ) } /\ ( j ` M ) = g /\ A. m e. Z ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) ) |
| 178 |
136 177
|
sylbid |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J /\ ( j ` if ( M e. ZZ , M , 0 ) ) = g /\ A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) ) |
| 179 |
178
|
exlimdv |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> ( E. j ( j : ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) --> J /\ ( j ` if ( M e. ZZ , M , 0 ) ) = g /\ A. m e. ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ( j ` ( m + 1 ) ) e. ( m F ( j ` m ) ) ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) ) |
| 180 |
124 179
|
mpd |
|- ( ( ph /\ ( g : { M } --> A /\ ta ) ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |
| 181 |
8 180
|
exlimddv |
|- ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |