Step |
Hyp |
Ref |
Expression |
1 |
|
sdc.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
sdc.2 |
|- ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) ) |
3 |
|
sdc.3 |
|- ( n = M -> ( ps <-> ta ) ) |
4 |
|
sdc.4 |
|- ( n = k -> ( ps <-> th ) ) |
5 |
|
sdc.5 |
|- ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) ) |
6 |
|
sdc.6 |
|- ( ph -> A e. V ) |
7 |
|
sdc.7 |
|- ( ph -> M e. ZZ ) |
8 |
|
sdc.8 |
|- ( ph -> E. g ( g : { M } --> A /\ ta ) ) |
9 |
|
sdc.9 |
|- ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
10 |
|
sdc.10 |
|- J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } |
11 |
|
sdc.11 |
|- F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
12 |
|
sdc.12 |
|- F/ k ph |
13 |
|
sdc.13 |
|- ( ph -> G : Z --> J ) |
14 |
|
sdc.14 |
|- ( ph -> ( G ` M ) : ( M ... M ) --> A ) |
15 |
|
sdc.15 |
|- ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. ( w F ( G ` w ) ) ) |
16 |
13
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. J ) |
17 |
10
|
eleq2i |
|- ( ( G ` k ) e. J <-> ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } ) |
18 |
|
nfcv |
|- F/_ g Z |
19 |
|
nfv |
|- F/ g ( G ` k ) : ( M ... n ) --> A |
20 |
|
nfsbc1v |
|- F/ g [. ( G ` k ) / g ]. ps |
21 |
19 20
|
nfan |
|- F/ g ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) |
22 |
18 21
|
nfrex |
|- F/ g E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) |
23 |
|
fvex |
|- ( G ` k ) e. _V |
24 |
|
feq1 |
|- ( g = ( G ` k ) -> ( g : ( M ... n ) --> A <-> ( G ` k ) : ( M ... n ) --> A ) ) |
25 |
|
sbceq1a |
|- ( g = ( G ` k ) -> ( ps <-> [. ( G ` k ) / g ]. ps ) ) |
26 |
24 25
|
anbi12d |
|- ( g = ( G ` k ) -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) |
27 |
26
|
rexbidv |
|- ( g = ( G ` k ) -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) |
28 |
22 23 27
|
elabf |
|- ( ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
29 |
17 28
|
bitri |
|- ( ( G ` k ) e. J <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
30 |
16 29
|
sylib |
|- ( ( ph /\ k e. Z ) -> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
31 |
|
fdm |
|- ( ( G ` k ) : ( M ... n ) --> A -> dom ( G ` k ) = ( M ... n ) ) |
32 |
31
|
adantr |
|- ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> dom ( G ` k ) = ( M ... n ) ) |
33 |
|
fveq2 |
|- ( x = M -> ( G ` x ) = ( G ` M ) ) |
34 |
|
oveq2 |
|- ( x = M -> ( M ... x ) = ( M ... M ) ) |
35 |
34
|
mpteq1d |
|- ( x = M -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) |
36 |
33 35
|
eqeq12d |
|- ( x = M -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) |
37 |
36
|
imbi2d |
|- ( x = M -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
38 |
|
fveq2 |
|- ( x = w -> ( G ` x ) = ( G ` w ) ) |
39 |
|
oveq2 |
|- ( x = w -> ( M ... x ) = ( M ... w ) ) |
40 |
39
|
mpteq1d |
|- ( x = w -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
41 |
38 40
|
eqeq12d |
|- ( x = w -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) |
42 |
41
|
imbi2d |
|- ( x = w -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
43 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( G ` x ) = ( G ` ( w + 1 ) ) ) |
44 |
|
oveq2 |
|- ( x = ( w + 1 ) -> ( M ... x ) = ( M ... ( w + 1 ) ) ) |
45 |
44
|
mpteq1d |
|- ( x = ( w + 1 ) -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
46 |
43 45
|
eqeq12d |
|- ( x = ( w + 1 ) -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
47 |
46
|
imbi2d |
|- ( x = ( w + 1 ) -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
48 |
|
fveq2 |
|- ( x = k -> ( G ` x ) = ( G ` k ) ) |
49 |
|
oveq2 |
|- ( x = k -> ( M ... x ) = ( M ... k ) ) |
50 |
49
|
mpteq1d |
|- ( x = k -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
51 |
48 50
|
eqeq12d |
|- ( x = k -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
52 |
51
|
imbi2d |
|- ( x = k -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
53 |
|
fveq2 |
|- ( m = k -> ( G ` m ) = ( G ` k ) ) |
54 |
|
id |
|- ( m = k -> m = k ) |
55 |
53 54
|
fveq12d |
|- ( m = k -> ( ( G ` m ) ` m ) = ( ( G ` k ) ` k ) ) |
56 |
|
eqid |
|- ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) |
57 |
|
fvex |
|- ( ( G ` k ) ` k ) e. _V |
58 |
55 56 57
|
fvmpt |
|- ( k e. ( M ... M ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) |
59 |
58
|
adantl |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) |
60 |
|
elfz1eq |
|- ( k e. ( M ... M ) -> k = M ) |
61 |
60
|
adantl |
|- ( ( ph /\ k e. ( M ... M ) ) -> k = M ) |
62 |
61
|
fveq2d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( G ` k ) = ( G ` M ) ) |
63 |
62
|
fveq1d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` k ) ` k ) = ( ( G ` M ) ` k ) ) |
64 |
59 63
|
eqtr2d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) |
65 |
64
|
ex |
|- ( ph -> ( k e. ( M ... M ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
66 |
12 65
|
ralrimi |
|- ( ph -> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) |
67 |
14
|
ffnd |
|- ( ph -> ( G ` M ) Fn ( M ... M ) ) |
68 |
|
fvex |
|- ( ( G ` m ) ` m ) e. _V |
69 |
68 56
|
fnmpti |
|- ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) |
70 |
|
eqfnfv |
|- ( ( ( G ` M ) Fn ( M ... M ) /\ ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) ) -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
71 |
67 69 70
|
sylancl |
|- ( ph -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
72 |
66 71
|
mpbird |
|- ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) |
73 |
72
|
a1i |
|- ( M e. ZZ -> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) |
74 |
1
|
eleq2i |
|- ( w e. Z <-> w e. ( ZZ>= ` M ) ) |
75 |
13
|
ffvelrnda |
|- ( ( ph /\ w e. Z ) -> ( G ` w ) e. J ) |
76 |
|
simpr |
|- ( ( ph /\ w e. Z ) -> w e. Z ) |
77 |
|
3simpa |
|- ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
78 |
77
|
reximi |
|- ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
79 |
78
|
ss2abi |
|- { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } |
80 |
1
|
fvexi |
|- Z e. _V |
81 |
|
nfv |
|- F/ k w e. Z |
82 |
12 81
|
nfan |
|- F/ k ( ph /\ w e. Z ) |
83 |
6
|
adantr |
|- ( ( ph /\ w e. Z ) -> A e. V ) |
84 |
|
simpl |
|- ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h : ( M ... ( k + 1 ) ) --> A ) |
85 |
|
ovex |
|- ( M ... ( k + 1 ) ) e. _V |
86 |
|
elmapg |
|- ( ( A e. V /\ ( M ... ( k + 1 ) ) e. _V ) -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) |
87 |
85 86
|
mpan2 |
|- ( A e. V -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) |
88 |
84 87
|
syl5ibr |
|- ( A e. V -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h e. ( A ^m ( M ... ( k + 1 ) ) ) ) ) |
89 |
88
|
abssdv |
|- ( A e. V -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) |
90 |
83 89
|
syl |
|- ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) |
91 |
|
ovex |
|- ( A ^m ( M ... ( k + 1 ) ) ) e. _V |
92 |
|
ssexg |
|- ( ( { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) /\ ( A ^m ( M ... ( k + 1 ) ) ) e. _V ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
93 |
90 91 92
|
sylancl |
|- ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
94 |
93
|
a1d |
|- ( ( ph /\ w e. Z ) -> ( k e. Z -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) ) |
95 |
82 94
|
ralrimi |
|- ( ( ph /\ w e. Z ) -> A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
96 |
|
abrexex2g |
|- ( ( Z e. _V /\ A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
97 |
80 95 96
|
sylancr |
|- ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
98 |
|
ssexg |
|- ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) |
99 |
79 97 98
|
sylancr |
|- ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) |
100 |
|
eqeq1 |
|- ( x = ( G ` w ) -> ( x = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
101 |
100
|
3anbi2d |
|- ( x = ( G ` w ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) |
102 |
101
|
rexbidv |
|- ( x = ( G ` w ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) |
103 |
102
|
abbidv |
|- ( x = ( G ` w ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) |
104 |
103
|
eleq1d |
|- ( x = ( G ` w ) -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) ) |
105 |
|
oveq2 |
|- ( x = ( G ` w ) -> ( w F x ) = ( w F ( G ` w ) ) ) |
106 |
105 103
|
eqeq12d |
|- ( x = ( G ` w ) -> ( ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } <-> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) |
107 |
104 106
|
imbi12d |
|- ( x = ( G ` w ) -> ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) <-> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
108 |
107
|
imbi2d |
|- ( x = ( G ` w ) -> ( ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) <-> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) ) |
109 |
11
|
ovmpt4g |
|- ( ( w e. Z /\ x e. J /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
110 |
109
|
3com12 |
|- ( ( x e. J /\ w e. Z /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
111 |
110
|
3exp |
|- ( x e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
112 |
108 111
|
vtoclga |
|- ( ( G ` w ) e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
113 |
75 76 99 112
|
syl3c |
|- ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) |
114 |
113 79
|
eqsstrdi |
|- ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) |
115 |
114 15
|
sseldd |
|- ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) |
116 |
|
fvex |
|- ( G ` ( w + 1 ) ) e. _V |
117 |
|
feq1 |
|- ( h = ( G ` ( w + 1 ) ) -> ( h : ( M ... ( k + 1 ) ) --> A <-> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) ) |
118 |
|
reseq1 |
|- ( h = ( G ` ( w + 1 ) ) -> ( h |` ( M ... k ) ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) |
119 |
118
|
eqeq2d |
|- ( h = ( G ` ( w + 1 ) ) -> ( ( G ` w ) = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
120 |
117 119
|
anbi12d |
|- ( h = ( G ` ( w + 1 ) ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) |
121 |
120
|
rexbidv |
|- ( h = ( G ` ( w + 1 ) ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) |
122 |
116 121
|
elab |
|- ( ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
123 |
115 122
|
sylib |
|- ( ( ph /\ w e. Z ) -> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
124 |
|
nfv |
|- F/ k ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
125 |
|
simprl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) |
126 |
|
fzssp1 |
|- ( M ... k ) C_ ( M ... ( k + 1 ) ) |
127 |
|
fssres |
|- ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( M ... k ) C_ ( M ... ( k + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) |
128 |
125 126 127
|
sylancl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) |
129 |
128
|
fdmd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... k ) ) |
130 |
|
eqid |
|- ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) |
131 |
68 130
|
fnmpti |
|- ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) |
132 |
|
simprr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
133 |
132
|
fneq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) <-> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) ) ) |
134 |
131 133
|
mpbiri |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) ) |
135 |
134
|
fndmd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... w ) ) |
136 |
129 135
|
eqtr3d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... k ) = ( M ... w ) ) |
137 |
|
simplr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. Z ) |
138 |
137 1
|
eleqtrdi |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. ( ZZ>= ` M ) ) |
139 |
|
fzopth |
|- ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) |
140 |
138 139
|
syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) |
141 |
136 140
|
mpbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M = M /\ k = w ) ) |
142 |
141
|
simprd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k = w ) |
143 |
142
|
oveq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( k + 1 ) = ( w + 1 ) ) |
144 |
143
|
oveq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) ) |
145 |
|
elfzp1 |
|- ( k e. ( ZZ>= ` M ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) |
146 |
138 145
|
syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) |
147 |
136
|
reseq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) ) |
148 |
|
fzssp1 |
|- ( M ... w ) C_ ( M ... ( w + 1 ) ) |
149 |
|
resmpt |
|- ( ( M ... w ) C_ ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
150 |
148 149
|
ax-mp |
|- ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) |
151 |
147 150
|
eqtr2di |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) |
152 |
132 151
|
eqtrd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) |
153 |
152
|
fveq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) ) |
154 |
|
fvres |
|- ( x e. ( M ... k ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` x ) ) |
155 |
|
fvres |
|- ( x e. ( M ... k ) -> ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) |
156 |
154 155
|
eqeq12d |
|- ( x e. ( M ... k ) -> ( ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
157 |
153 156
|
syl5ibcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... k ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
158 |
143
|
eqeq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) <-> x = ( w + 1 ) ) ) |
159 |
142 138
|
eqeltrrd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> w e. ( ZZ>= ` M ) ) |
160 |
|
peano2uz |
|- ( w e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( ZZ>= ` M ) ) |
161 |
|
eluzfz2 |
|- ( ( w + 1 ) e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( M ... ( w + 1 ) ) ) |
162 |
|
fveq2 |
|- ( m = ( w + 1 ) -> ( G ` m ) = ( G ` ( w + 1 ) ) ) |
163 |
|
id |
|- ( m = ( w + 1 ) -> m = ( w + 1 ) ) |
164 |
162 163
|
fveq12d |
|- ( m = ( w + 1 ) -> ( ( G ` m ) ` m ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
165 |
|
eqid |
|- ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |
166 |
|
fvex |
|- ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) e. _V |
167 |
164 165 166
|
fvmpt |
|- ( ( w + 1 ) e. ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
168 |
159 160 161 167
|
4syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
169 |
168
|
eqcomd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) |
170 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
171 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) |
172 |
170 171
|
eqeq12d |
|- ( x = ( w + 1 ) -> ( ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) ) |
173 |
169 172
|
syl5ibrcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
174 |
158 173
|
sylbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
175 |
157 174
|
jaod |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( x e. ( M ... k ) \/ x = ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
176 |
146 175
|
sylbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
177 |
176
|
ralrimiv |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) |
178 |
|
ffn |
|- ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) |
179 |
178
|
ad2antrl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) |
180 |
68 165
|
fnmpti |
|- ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) |
181 |
|
eqfnfv2 |
|- ( ( ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) /\ ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) |
182 |
179 180 181
|
sylancl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) |
183 |
144 177 182
|
mpbir2and |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
184 |
183
|
expr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
185 |
|
eqeq1 |
|- ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) <-> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) |
186 |
185
|
imbi1d |
|- ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
187 |
184 186
|
syl5ibrcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
188 |
187
|
expimpd |
|- ( ( ( ph /\ w e. Z ) /\ k e. Z ) -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
189 |
188
|
ex |
|- ( ( ph /\ w e. Z ) -> ( k e. Z -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) ) |
190 |
82 124 189
|
rexlimd |
|- ( ( ph /\ w e. Z ) -> ( E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
191 |
123 190
|
mpd |
|- ( ( ph /\ w e. Z ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
192 |
191
|
expcom |
|- ( w e. Z -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
193 |
74 192
|
sylbir |
|- ( w e. ( ZZ>= ` M ) -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
194 |
193
|
a2d |
|- ( w e. ( ZZ>= ` M ) -> ( ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) -> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
195 |
37 42 47 52 73 194
|
uzind4 |
|- ( k e. ( ZZ>= ` M ) -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
196 |
195 1
|
eleq2s |
|- ( k e. Z -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
197 |
196
|
impcom |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
198 |
197
|
dmeqd |
|- ( ( ph /\ k e. Z ) -> dom ( G ` k ) = dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
199 |
|
dmmptg |
|- ( A. m e. ( M ... k ) ( ( G ` m ) ` m ) e. _V -> dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) ) |
200 |
68
|
a1i |
|- ( m e. ( M ... k ) -> ( ( G ` m ) ` m ) e. _V ) |
201 |
199 200
|
mprg |
|- dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) |
202 |
198 201
|
eqtrdi |
|- ( ( ph /\ k e. Z ) -> dom ( G ` k ) = ( M ... k ) ) |
203 |
202
|
eqeq1d |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M ... k ) = ( M ... n ) ) ) |
204 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
205 |
204 1
|
eleqtrdi |
|- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
206 |
|
fzopth |
|- ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
207 |
205 206
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
208 |
203 207
|
bitrd |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
209 |
|
simpr |
|- ( ( M = M /\ k = n ) -> k = n ) |
210 |
208 209
|
syl6bi |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) -> k = n ) ) |
211 |
32 210
|
syl5 |
|- ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> k = n ) ) |
212 |
|
oveq2 |
|- ( n = k -> ( M ... n ) = ( M ... k ) ) |
213 |
212
|
feq2d |
|- ( n = k -> ( ( G ` k ) : ( M ... n ) --> A <-> ( G ` k ) : ( M ... k ) --> A ) ) |
214 |
4
|
sbcbidv |
|- ( n = k -> ( [. ( G ` k ) / g ]. ps <-> [. ( G ` k ) / g ]. th ) ) |
215 |
213 214
|
anbi12d |
|- ( n = k -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
216 |
215
|
equcoms |
|- ( k = n -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
217 |
216
|
biimpcd |
|- ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( k = n -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
218 |
211 217
|
sylcom |
|- ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
219 |
218
|
rexlimdvw |
|- ( ( ph /\ k e. Z ) -> ( E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
220 |
30 219
|
mpd |
|- ( ( ph /\ k e. Z ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) |
221 |
220
|
simpld |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) : ( M ... k ) --> A ) |
222 |
|
eluzfz2 |
|- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
223 |
205 222
|
syl |
|- ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) |
224 |
221 223
|
ffvelrnd |
|- ( ( ph /\ k e. Z ) -> ( ( G ` k ) ` k ) e. A ) |
225 |
55
|
cbvmptv |
|- ( m e. Z |-> ( ( G ` m ) ` m ) ) = ( k e. Z |-> ( ( G ` k ) ` k ) ) |
226 |
12 224 225
|
fmptdf |
|- ( ph -> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) |
227 |
220
|
simprd |
|- ( ( ph /\ k e. Z ) -> [. ( G ` k ) / g ]. th ) |
228 |
197 227
|
sbceq1dd |
|- ( ( ph /\ k e. Z ) -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
229 |
228
|
ex |
|- ( ph -> ( k e. Z -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
230 |
12 229
|
ralrimi |
|- ( ph -> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
231 |
|
mpteq1 |
|- ( ( M ... n ) = ( M ... k ) -> ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
232 |
|
dfsbcq |
|- ( ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
233 |
212 231 232
|
3syl |
|- ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
234 |
4
|
sbcbidv |
|- ( n = k -> ( [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
235 |
233 234
|
bitrd |
|- ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
236 |
235
|
cbvralvw |
|- ( A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
237 |
230 236
|
sylibr |
|- ( ph -> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) |
238 |
80
|
mptex |
|- ( m e. Z |-> ( ( G ` m ) ` m ) ) e. _V |
239 |
|
feq1 |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f : Z --> A <-> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) ) |
240 |
|
vex |
|- f e. _V |
241 |
240
|
resex |
|- ( f |` ( M ... n ) ) e. _V |
242 |
241 2
|
sbcie |
|- ( [. ( f |` ( M ... n ) ) / g ]. ps <-> ch ) |
243 |
|
reseq1 |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) ) |
244 |
|
fzssuz |
|- ( M ... n ) C_ ( ZZ>= ` M ) |
245 |
244 1
|
sseqtrri |
|- ( M ... n ) C_ Z |
246 |
|
resmpt |
|- ( ( M ... n ) C_ Z -> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) |
247 |
245 246
|
ax-mp |
|- ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) |
248 |
243 247
|
eqtrdi |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) |
249 |
248
|
sbceq1d |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( [. ( f |` ( M ... n ) ) / g ]. ps <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
250 |
242 249
|
bitr3id |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ch <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
251 |
250
|
ralbidv |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( A. n e. Z ch <-> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
252 |
239 251
|
anbi12d |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ( f : Z --> A /\ A. n e. Z ch ) <-> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) ) |
253 |
238 252
|
spcev |
|- ( ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |
254 |
226 237 253
|
syl2anc |
|- ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |