| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdc.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | sdc.2 |  |-  ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) ) | 
						
							| 3 |  | sdc.3 |  |-  ( n = M -> ( ps <-> ta ) ) | 
						
							| 4 |  | sdc.4 |  |-  ( n = k -> ( ps <-> th ) ) | 
						
							| 5 |  | sdc.5 |  |-  ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) ) | 
						
							| 6 |  | sdc.6 |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | sdc.7 |  |-  ( ph -> M e. ZZ ) | 
						
							| 8 |  | sdc.8 |  |-  ( ph -> E. g ( g : { M } --> A /\ ta ) ) | 
						
							| 9 |  | sdc.9 |  |-  ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) | 
						
							| 10 |  | sdc.10 |  |-  J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } | 
						
							| 11 |  | sdc.11 |  |-  F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) | 
						
							| 12 |  | sdc.12 |  |-  F/ k ph | 
						
							| 13 |  | sdc.13 |  |-  ( ph -> G : Z --> J ) | 
						
							| 14 |  | sdc.14 |  |-  ( ph -> ( G ` M ) : ( M ... M ) --> A ) | 
						
							| 15 |  | sdc.15 |  |-  ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. ( w F ( G ` w ) ) ) | 
						
							| 16 | 13 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. J ) | 
						
							| 17 | 10 | eleq2i |  |-  ( ( G ` k ) e. J <-> ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } ) | 
						
							| 18 |  | nfcv |  |-  F/_ g Z | 
						
							| 19 |  | nfv |  |-  F/ g ( G ` k ) : ( M ... n ) --> A | 
						
							| 20 |  | nfsbc1v |  |-  F/ g [. ( G ` k ) / g ]. ps | 
						
							| 21 | 19 20 | nfan |  |-  F/ g ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) | 
						
							| 22 | 18 21 | nfrexw |  |-  F/ g E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) | 
						
							| 23 |  | fvex |  |-  ( G ` k ) e. _V | 
						
							| 24 |  | feq1 |  |-  ( g = ( G ` k ) -> ( g : ( M ... n ) --> A <-> ( G ` k ) : ( M ... n ) --> A ) ) | 
						
							| 25 |  | sbceq1a |  |-  ( g = ( G ` k ) -> ( ps <-> [. ( G ` k ) / g ]. ps ) ) | 
						
							| 26 | 24 25 | anbi12d |  |-  ( g = ( G ` k ) -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) | 
						
							| 27 | 26 | rexbidv |  |-  ( g = ( G ` k ) -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) | 
						
							| 28 | 22 23 27 | elabf |  |-  ( ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) | 
						
							| 29 | 17 28 | bitri |  |-  ( ( G ` k ) e. J <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) | 
						
							| 30 | 16 29 | sylib |  |-  ( ( ph /\ k e. Z ) -> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) | 
						
							| 31 |  | fdm |  |-  ( ( G ` k ) : ( M ... n ) --> A -> dom ( G ` k ) = ( M ... n ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> dom ( G ` k ) = ( M ... n ) ) | 
						
							| 33 |  | fveq2 |  |-  ( x = M -> ( G ` x ) = ( G ` M ) ) | 
						
							| 34 |  | oveq2 |  |-  ( x = M -> ( M ... x ) = ( M ... M ) ) | 
						
							| 35 | 34 | mpteq1d |  |-  ( x = M -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 36 | 33 35 | eqeq12d |  |-  ( x = M -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 37 | 36 | imbi2d |  |-  ( x = M -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( x = w -> ( G ` x ) = ( G ` w ) ) | 
						
							| 39 |  | oveq2 |  |-  ( x = w -> ( M ... x ) = ( M ... w ) ) | 
						
							| 40 | 39 | mpteq1d |  |-  ( x = w -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 41 | 38 40 | eqeq12d |  |-  ( x = w -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 42 | 41 | imbi2d |  |-  ( x = w -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 43 |  | fveq2 |  |-  ( x = ( w + 1 ) -> ( G ` x ) = ( G ` ( w + 1 ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( x = ( w + 1 ) -> ( M ... x ) = ( M ... ( w + 1 ) ) ) | 
						
							| 45 | 44 | mpteq1d |  |-  ( x = ( w + 1 ) -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 46 | 43 45 | eqeq12d |  |-  ( x = ( w + 1 ) -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 47 | 46 | imbi2d |  |-  ( x = ( w + 1 ) -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 48 |  | fveq2 |  |-  ( x = k -> ( G ` x ) = ( G ` k ) ) | 
						
							| 49 |  | oveq2 |  |-  ( x = k -> ( M ... x ) = ( M ... k ) ) | 
						
							| 50 | 49 | mpteq1d |  |-  ( x = k -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 51 | 48 50 | eqeq12d |  |-  ( x = k -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 52 | 51 | imbi2d |  |-  ( x = k -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 53 |  | fveq2 |  |-  ( m = k -> ( G ` m ) = ( G ` k ) ) | 
						
							| 54 |  | id |  |-  ( m = k -> m = k ) | 
						
							| 55 | 53 54 | fveq12d |  |-  ( m = k -> ( ( G ` m ) ` m ) = ( ( G ` k ) ` k ) ) | 
						
							| 56 |  | eqid |  |-  ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) | 
						
							| 57 |  | fvex |  |-  ( ( G ` k ) ` k ) e. _V | 
						
							| 58 | 55 56 57 | fvmpt |  |-  ( k e. ( M ... M ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) | 
						
							| 60 |  | elfz1eq |  |-  ( k e. ( M ... M ) -> k = M ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ph /\ k e. ( M ... M ) ) -> k = M ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ( ph /\ k e. ( M ... M ) ) -> ( G ` k ) = ( G ` M ) ) | 
						
							| 63 | 62 | fveq1d |  |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` k ) ` k ) = ( ( G ` M ) ` k ) ) | 
						
							| 64 | 59 63 | eqtr2d |  |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) | 
						
							| 65 | 64 | ex |  |-  ( ph -> ( k e. ( M ... M ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) | 
						
							| 66 | 12 65 | ralrimi |  |-  ( ph -> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) | 
						
							| 67 | 14 | ffnd |  |-  ( ph -> ( G ` M ) Fn ( M ... M ) ) | 
						
							| 68 |  | fvex |  |-  ( ( G ` m ) ` m ) e. _V | 
						
							| 69 | 68 56 | fnmpti |  |-  ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) | 
						
							| 70 |  | eqfnfv |  |-  ( ( ( G ` M ) Fn ( M ... M ) /\ ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) ) -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) | 
						
							| 71 | 67 69 70 | sylancl |  |-  ( ph -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) | 
						
							| 72 | 66 71 | mpbird |  |-  ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 73 | 72 | a1i |  |-  ( M e. ZZ -> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 74 | 1 | eleq2i |  |-  ( w e. Z <-> w e. ( ZZ>= ` M ) ) | 
						
							| 75 | 13 | ffvelcdmda |  |-  ( ( ph /\ w e. Z ) -> ( G ` w ) e. J ) | 
						
							| 76 |  | simpr |  |-  ( ( ph /\ w e. Z ) -> w e. Z ) | 
						
							| 77 |  | 3simpa |  |-  ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) | 
						
							| 78 | 77 | reximi |  |-  ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) | 
						
							| 79 | 78 | ss2abi |  |-  { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } | 
						
							| 80 | 1 | fvexi |  |-  Z e. _V | 
						
							| 81 |  | nfv |  |-  F/ k w e. Z | 
						
							| 82 | 12 81 | nfan |  |-  F/ k ( ph /\ w e. Z ) | 
						
							| 83 | 6 | adantr |  |-  ( ( ph /\ w e. Z ) -> A e. V ) | 
						
							| 84 |  | simpl |  |-  ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h : ( M ... ( k + 1 ) ) --> A ) | 
						
							| 85 |  | ovex |  |-  ( M ... ( k + 1 ) ) e. _V | 
						
							| 86 |  | elmapg |  |-  ( ( A e. V /\ ( M ... ( k + 1 ) ) e. _V ) -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) | 
						
							| 87 | 85 86 | mpan2 |  |-  ( A e. V -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) | 
						
							| 88 | 84 87 | imbitrrid |  |-  ( A e. V -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h e. ( A ^m ( M ... ( k + 1 ) ) ) ) ) | 
						
							| 89 | 88 | abssdv |  |-  ( A e. V -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) | 
						
							| 90 | 83 89 | syl |  |-  ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) | 
						
							| 91 |  | ovex |  |-  ( A ^m ( M ... ( k + 1 ) ) ) e. _V | 
						
							| 92 |  | ssexg |  |-  ( ( { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) /\ ( A ^m ( M ... ( k + 1 ) ) ) e. _V ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) | 
						
							| 93 | 90 91 92 | sylancl |  |-  ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) | 
						
							| 94 | 93 | a1d |  |-  ( ( ph /\ w e. Z ) -> ( k e. Z -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) ) | 
						
							| 95 | 82 94 | ralrimi |  |-  ( ( ph /\ w e. Z ) -> A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) | 
						
							| 96 |  | abrexex2g |  |-  ( ( Z e. _V /\ A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) | 
						
							| 97 | 80 95 96 | sylancr |  |-  ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) | 
						
							| 98 |  | ssexg |  |-  ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) | 
						
							| 99 | 79 97 98 | sylancr |  |-  ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) | 
						
							| 100 |  | eqeq1 |  |-  ( x = ( G ` w ) -> ( x = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( h |` ( M ... k ) ) ) ) | 
						
							| 101 | 100 | 3anbi2d |  |-  ( x = ( G ` w ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) | 
						
							| 102 | 101 | rexbidv |  |-  ( x = ( G ` w ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) | 
						
							| 103 | 102 | abbidv |  |-  ( x = ( G ` w ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) | 
						
							| 104 | 103 | eleq1d |  |-  ( x = ( G ` w ) -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) ) | 
						
							| 105 |  | oveq2 |  |-  ( x = ( G ` w ) -> ( w F x ) = ( w F ( G ` w ) ) ) | 
						
							| 106 | 105 103 | eqeq12d |  |-  ( x = ( G ` w ) -> ( ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } <-> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) | 
						
							| 107 | 104 106 | imbi12d |  |-  ( x = ( G ` w ) -> ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) <-> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) | 
						
							| 108 | 107 | imbi2d |  |-  ( x = ( G ` w ) -> ( ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) <-> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) ) | 
						
							| 109 | 11 | ovmpt4g |  |-  ( ( w e. Z /\ x e. J /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) | 
						
							| 110 | 109 | 3com12 |  |-  ( ( x e. J /\ w e. Z /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) | 
						
							| 111 | 110 | 3exp |  |-  ( x e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) ) | 
						
							| 112 | 108 111 | vtoclga |  |-  ( ( G ` w ) e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) | 
						
							| 113 | 75 76 99 112 | syl3c |  |-  ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) | 
						
							| 114 | 113 79 | eqsstrdi |  |-  ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) | 
						
							| 115 | 114 15 | sseldd |  |-  ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) | 
						
							| 116 |  | fvex |  |-  ( G ` ( w + 1 ) ) e. _V | 
						
							| 117 |  | feq1 |  |-  ( h = ( G ` ( w + 1 ) ) -> ( h : ( M ... ( k + 1 ) ) --> A <-> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) ) | 
						
							| 118 |  | reseq1 |  |-  ( h = ( G ` ( w + 1 ) ) -> ( h |` ( M ... k ) ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) | 
						
							| 119 | 118 | eqeq2d |  |-  ( h = ( G ` ( w + 1 ) ) -> ( ( G ` w ) = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) | 
						
							| 120 | 117 119 | anbi12d |  |-  ( h = ( G ` ( w + 1 ) ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) | 
						
							| 121 | 120 | rexbidv |  |-  ( h = ( G ` ( w + 1 ) ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) | 
						
							| 122 | 116 121 | elab |  |-  ( ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) | 
						
							| 123 | 115 122 | sylib |  |-  ( ( ph /\ w e. Z ) -> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) | 
						
							| 124 |  | nfv |  |-  F/ k ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 125 |  | simprl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) | 
						
							| 126 |  | fzssp1 |  |-  ( M ... k ) C_ ( M ... ( k + 1 ) ) | 
						
							| 127 |  | fssres |  |-  ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( M ... k ) C_ ( M ... ( k + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) | 
						
							| 128 | 125 126 127 | sylancl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) | 
						
							| 129 | 128 | fdmd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... k ) ) | 
						
							| 130 |  | eqid |  |-  ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) | 
						
							| 131 | 68 130 | fnmpti |  |-  ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) | 
						
							| 132 |  | simprr |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 133 | 132 | fneq1d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) <-> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) ) ) | 
						
							| 134 | 131 133 | mpbiri |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) ) | 
						
							| 135 | 134 | fndmd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... w ) ) | 
						
							| 136 | 129 135 | eqtr3d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... k ) = ( M ... w ) ) | 
						
							| 137 |  | simplr |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. Z ) | 
						
							| 138 | 137 1 | eleqtrdi |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 139 |  | fzopth |  |-  ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) | 
						
							| 140 | 138 139 | syl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) | 
						
							| 141 | 136 140 | mpbid |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M = M /\ k = w ) ) | 
						
							| 142 | 141 | simprd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k = w ) | 
						
							| 143 | 142 | oveq1d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( k + 1 ) = ( w + 1 ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) ) | 
						
							| 145 |  | elfzp1 |  |-  ( k e. ( ZZ>= ` M ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) | 
						
							| 146 | 138 145 | syl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) | 
						
							| 147 | 136 | reseq2d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) ) | 
						
							| 148 |  | fzssp1 |  |-  ( M ... w ) C_ ( M ... ( w + 1 ) ) | 
						
							| 149 |  | resmpt |  |-  ( ( M ... w ) C_ ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 150 | 148 149 | ax-mp |  |-  ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) | 
						
							| 151 | 147 150 | eqtr2di |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) | 
						
							| 152 | 132 151 | eqtrd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) | 
						
							| 153 | 152 | fveq1d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) ) | 
						
							| 154 |  | fvres |  |-  ( x e. ( M ... k ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` x ) ) | 
						
							| 155 |  | fvres |  |-  ( x e. ( M ... k ) -> ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) | 
						
							| 156 | 154 155 | eqeq12d |  |-  ( x e. ( M ... k ) -> ( ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 157 | 153 156 | syl5ibcom |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... k ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 158 | 143 | eqeq2d |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) <-> x = ( w + 1 ) ) ) | 
						
							| 159 | 142 138 | eqeltrrd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> w e. ( ZZ>= ` M ) ) | 
						
							| 160 |  | peano2uz |  |-  ( w e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 161 |  | eluzfz2 |  |-  ( ( w + 1 ) e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( M ... ( w + 1 ) ) ) | 
						
							| 162 |  | fveq2 |  |-  ( m = ( w + 1 ) -> ( G ` m ) = ( G ` ( w + 1 ) ) ) | 
						
							| 163 |  | id |  |-  ( m = ( w + 1 ) -> m = ( w + 1 ) ) | 
						
							| 164 | 162 163 | fveq12d |  |-  ( m = ( w + 1 ) -> ( ( G ` m ) ` m ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) | 
						
							| 165 |  | eqid |  |-  ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) | 
						
							| 166 |  | fvex |  |-  ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) e. _V | 
						
							| 167 | 164 165 166 | fvmpt |  |-  ( ( w + 1 ) e. ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) | 
						
							| 168 | 159 160 161 167 | 4syl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) | 
						
							| 169 | 168 | eqcomd |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) | 
						
							| 170 |  | fveq2 |  |-  ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) | 
						
							| 171 |  | fveq2 |  |-  ( x = ( w + 1 ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) | 
						
							| 172 | 170 171 | eqeq12d |  |-  ( x = ( w + 1 ) -> ( ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) ) | 
						
							| 173 | 169 172 | syl5ibrcom |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 174 | 158 173 | sylbid |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 175 | 157 174 | jaod |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( x e. ( M ... k ) \/ x = ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 176 | 146 175 | sylbid |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) | 
						
							| 177 | 176 | ralrimiv |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) | 
						
							| 178 |  | ffn |  |-  ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) | 
						
							| 179 | 178 | ad2antrl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) | 
						
							| 180 | 68 165 | fnmpti |  |-  ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) | 
						
							| 181 |  | eqfnfv2 |  |-  ( ( ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) /\ ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) | 
						
							| 182 | 179 180 181 | sylancl |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) | 
						
							| 183 | 144 177 182 | mpbir2and |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 184 | 183 | expr |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 185 |  | eqeq1 |  |-  ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) <-> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 186 | 185 | imbi1d |  |-  ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 187 | 184 186 | syl5ibrcom |  |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 188 | 187 | expimpd |  |-  ( ( ( ph /\ w e. Z ) /\ k e. Z ) -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 189 | 188 | ex |  |-  ( ( ph /\ w e. Z ) -> ( k e. Z -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) ) | 
						
							| 190 | 82 124 189 | rexlimd |  |-  ( ( ph /\ w e. Z ) -> ( E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 191 | 123 190 | mpd |  |-  ( ( ph /\ w e. Z ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 192 | 191 | expcom |  |-  ( w e. Z -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 193 | 74 192 | sylbir |  |-  ( w e. ( ZZ>= ` M ) -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 194 | 193 | a2d |  |-  ( w e. ( ZZ>= ` M ) -> ( ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) -> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) | 
						
							| 195 | 37 42 47 52 73 194 | uzind4 |  |-  ( k e. ( ZZ>= ` M ) -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 196 | 195 1 | eleq2s |  |-  ( k e. Z -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) | 
						
							| 197 | 196 | impcom |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 198 | 197 | dmeqd |  |-  ( ( ph /\ k e. Z ) -> dom ( G ` k ) = dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 199 |  | dmmptg |  |-  ( A. m e. ( M ... k ) ( ( G ` m ) ` m ) e. _V -> dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) ) | 
						
							| 200 | 68 | a1i |  |-  ( m e. ( M ... k ) -> ( ( G ` m ) ` m ) e. _V ) | 
						
							| 201 | 199 200 | mprg |  |-  dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) | 
						
							| 202 | 198 201 | eqtrdi |  |-  ( ( ph /\ k e. Z ) -> dom ( G ` k ) = ( M ... k ) ) | 
						
							| 203 | 202 | eqeq1d |  |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M ... k ) = ( M ... n ) ) ) | 
						
							| 204 |  | simpr |  |-  ( ( ph /\ k e. Z ) -> k e. Z ) | 
						
							| 205 | 204 1 | eleqtrdi |  |-  ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 206 |  | fzopth |  |-  ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) | 
						
							| 207 | 205 206 | syl |  |-  ( ( ph /\ k e. Z ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) | 
						
							| 208 | 203 207 | bitrd |  |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) | 
						
							| 209 |  | simpr |  |-  ( ( M = M /\ k = n ) -> k = n ) | 
						
							| 210 | 208 209 | biimtrdi |  |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) -> k = n ) ) | 
						
							| 211 | 32 210 | syl5 |  |-  ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> k = n ) ) | 
						
							| 212 |  | oveq2 |  |-  ( n = k -> ( M ... n ) = ( M ... k ) ) | 
						
							| 213 | 212 | feq2d |  |-  ( n = k -> ( ( G ` k ) : ( M ... n ) --> A <-> ( G ` k ) : ( M ... k ) --> A ) ) | 
						
							| 214 | 4 | sbcbidv |  |-  ( n = k -> ( [. ( G ` k ) / g ]. ps <-> [. ( G ` k ) / g ]. th ) ) | 
						
							| 215 | 213 214 | anbi12d |  |-  ( n = k -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) | 
						
							| 216 | 215 | equcoms |  |-  ( k = n -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) | 
						
							| 217 | 216 | biimpcd |  |-  ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( k = n -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) | 
						
							| 218 | 211 217 | sylcom |  |-  ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) | 
						
							| 219 | 218 | rexlimdvw |  |-  ( ( ph /\ k e. Z ) -> ( E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) | 
						
							| 220 | 30 219 | mpd |  |-  ( ( ph /\ k e. Z ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) | 
						
							| 221 | 220 | simpld |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) : ( M ... k ) --> A ) | 
						
							| 222 |  | eluzfz2 |  |-  ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) | 
						
							| 223 | 205 222 | syl |  |-  ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) | 
						
							| 224 | 221 223 | ffvelcdmd |  |-  ( ( ph /\ k e. Z ) -> ( ( G ` k ) ` k ) e. A ) | 
						
							| 225 | 55 | cbvmptv |  |-  ( m e. Z |-> ( ( G ` m ) ` m ) ) = ( k e. Z |-> ( ( G ` k ) ` k ) ) | 
						
							| 226 | 12 224 225 | fmptdf |  |-  ( ph -> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) | 
						
							| 227 | 220 | simprd |  |-  ( ( ph /\ k e. Z ) -> [. ( G ` k ) / g ]. th ) | 
						
							| 228 | 197 227 | sbceq1dd |  |-  ( ( ph /\ k e. Z ) -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) | 
						
							| 229 | 228 | ex |  |-  ( ph -> ( k e. Z -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) | 
						
							| 230 | 12 229 | ralrimi |  |-  ( ph -> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) | 
						
							| 231 |  | mpteq1 |  |-  ( ( M ... n ) = ( M ... k ) -> ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 232 |  | dfsbcq |  |-  ( ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) | 
						
							| 233 | 212 231 232 | 3syl |  |-  ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) | 
						
							| 234 | 4 | sbcbidv |  |-  ( n = k -> ( [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) | 
						
							| 235 | 233 234 | bitrd |  |-  ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) | 
						
							| 236 | 235 | cbvralvw |  |-  ( A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) | 
						
							| 237 | 230 236 | sylibr |  |-  ( ph -> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) | 
						
							| 238 | 80 | mptex |  |-  ( m e. Z |-> ( ( G ` m ) ` m ) ) e. _V | 
						
							| 239 |  | feq1 |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f : Z --> A <-> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) ) | 
						
							| 240 |  | vex |  |-  f e. _V | 
						
							| 241 | 240 | resex |  |-  ( f |` ( M ... n ) ) e. _V | 
						
							| 242 | 241 2 | sbcie |  |-  ( [. ( f |` ( M ... n ) ) / g ]. ps <-> ch ) | 
						
							| 243 |  | reseq1 |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) ) | 
						
							| 244 |  | fzssuz |  |-  ( M ... n ) C_ ( ZZ>= ` M ) | 
						
							| 245 | 244 1 | sseqtrri |  |-  ( M ... n ) C_ Z | 
						
							| 246 |  | resmpt |  |-  ( ( M ... n ) C_ Z -> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 247 | 245 246 | ax-mp |  |-  ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) | 
						
							| 248 | 243 247 | eqtrdi |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) | 
						
							| 249 | 248 | sbceq1d |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( [. ( f |` ( M ... n ) ) / g ]. ps <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) | 
						
							| 250 | 242 249 | bitr3id |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ch <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) | 
						
							| 251 | 250 | ralbidv |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( A. n e. Z ch <-> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) | 
						
							| 252 | 239 251 | anbi12d |  |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ( f : Z --> A /\ A. n e. Z ch ) <-> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) ) | 
						
							| 253 | 238 252 | spcev |  |-  ( ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) | 
						
							| 254 | 226 237 253 | syl2anc |  |-  ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |