| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdc.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
sdc.2 |
|- ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) ) |
| 3 |
|
sdc.3 |
|- ( n = M -> ( ps <-> ta ) ) |
| 4 |
|
sdc.4 |
|- ( n = k -> ( ps <-> th ) ) |
| 5 |
|
sdc.5 |
|- ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) ) |
| 6 |
|
sdc.6 |
|- ( ph -> A e. V ) |
| 7 |
|
sdc.7 |
|- ( ph -> M e. ZZ ) |
| 8 |
|
sdc.8 |
|- ( ph -> E. g ( g : { M } --> A /\ ta ) ) |
| 9 |
|
sdc.9 |
|- ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 10 |
|
sdc.10 |
|- J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } |
| 11 |
|
sdc.11 |
|- F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
| 12 |
|
sdc.12 |
|- F/ k ph |
| 13 |
|
sdc.13 |
|- ( ph -> G : Z --> J ) |
| 14 |
|
sdc.14 |
|- ( ph -> ( G ` M ) : ( M ... M ) --> A ) |
| 15 |
|
sdc.15 |
|- ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. ( w F ( G ` w ) ) ) |
| 16 |
13
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. J ) |
| 17 |
10
|
eleq2i |
|- ( ( G ` k ) e. J <-> ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } ) |
| 18 |
|
nfcv |
|- F/_ g Z |
| 19 |
|
nfv |
|- F/ g ( G ` k ) : ( M ... n ) --> A |
| 20 |
|
nfsbc1v |
|- F/ g [. ( G ` k ) / g ]. ps |
| 21 |
19 20
|
nfan |
|- F/ g ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) |
| 22 |
18 21
|
nfrexw |
|- F/ g E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) |
| 23 |
|
fvex |
|- ( G ` k ) e. _V |
| 24 |
|
feq1 |
|- ( g = ( G ` k ) -> ( g : ( M ... n ) --> A <-> ( G ` k ) : ( M ... n ) --> A ) ) |
| 25 |
|
sbceq1a |
|- ( g = ( G ` k ) -> ( ps <-> [. ( G ` k ) / g ]. ps ) ) |
| 26 |
24 25
|
anbi12d |
|- ( g = ( G ` k ) -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) |
| 27 |
26
|
rexbidv |
|- ( g = ( G ` k ) -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) ) |
| 28 |
22 23 27
|
elabf |
|- ( ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
| 29 |
17 28
|
bitri |
|- ( ( G ` k ) e. J <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
| 30 |
16 29
|
sylib |
|- ( ( ph /\ k e. Z ) -> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) |
| 31 |
|
fdm |
|- ( ( G ` k ) : ( M ... n ) --> A -> dom ( G ` k ) = ( M ... n ) ) |
| 32 |
31
|
adantr |
|- ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> dom ( G ` k ) = ( M ... n ) ) |
| 33 |
|
fveq2 |
|- ( x = M -> ( G ` x ) = ( G ` M ) ) |
| 34 |
|
oveq2 |
|- ( x = M -> ( M ... x ) = ( M ... M ) ) |
| 35 |
34
|
mpteq1d |
|- ( x = M -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) |
| 36 |
33 35
|
eqeq12d |
|- ( x = M -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 37 |
36
|
imbi2d |
|- ( x = M -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 38 |
|
fveq2 |
|- ( x = w -> ( G ` x ) = ( G ` w ) ) |
| 39 |
|
oveq2 |
|- ( x = w -> ( M ... x ) = ( M ... w ) ) |
| 40 |
39
|
mpteq1d |
|- ( x = w -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
| 41 |
38 40
|
eqeq12d |
|- ( x = w -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 42 |
41
|
imbi2d |
|- ( x = w -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 43 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( G ` x ) = ( G ` ( w + 1 ) ) ) |
| 44 |
|
oveq2 |
|- ( x = ( w + 1 ) -> ( M ... x ) = ( M ... ( w + 1 ) ) ) |
| 45 |
44
|
mpteq1d |
|- ( x = ( w + 1 ) -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
| 46 |
43 45
|
eqeq12d |
|- ( x = ( w + 1 ) -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 47 |
46
|
imbi2d |
|- ( x = ( w + 1 ) -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 48 |
|
fveq2 |
|- ( x = k -> ( G ` x ) = ( G ` k ) ) |
| 49 |
|
oveq2 |
|- ( x = k -> ( M ... x ) = ( M ... k ) ) |
| 50 |
49
|
mpteq1d |
|- ( x = k -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
| 51 |
48 50
|
eqeq12d |
|- ( x = k -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 52 |
51
|
imbi2d |
|- ( x = k -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 53 |
|
fveq2 |
|- ( m = k -> ( G ` m ) = ( G ` k ) ) |
| 54 |
|
id |
|- ( m = k -> m = k ) |
| 55 |
53 54
|
fveq12d |
|- ( m = k -> ( ( G ` m ) ` m ) = ( ( G ` k ) ` k ) ) |
| 56 |
|
eqid |
|- ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) |
| 57 |
|
fvex |
|- ( ( G ` k ) ` k ) e. _V |
| 58 |
55 56 57
|
fvmpt |
|- ( k e. ( M ... M ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) ) |
| 60 |
|
elfz1eq |
|- ( k e. ( M ... M ) -> k = M ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ k e. ( M ... M ) ) -> k = M ) |
| 62 |
61
|
fveq2d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( G ` k ) = ( G ` M ) ) |
| 63 |
62
|
fveq1d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` k ) ` k ) = ( ( G ` M ) ` k ) ) |
| 64 |
59 63
|
eqtr2d |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) |
| 65 |
64
|
ex |
|- ( ph -> ( k e. ( M ... M ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
| 66 |
12 65
|
ralrimi |
|- ( ph -> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) |
| 67 |
14
|
ffnd |
|- ( ph -> ( G ` M ) Fn ( M ... M ) ) |
| 68 |
|
fvex |
|- ( ( G ` m ) ` m ) e. _V |
| 69 |
68 56
|
fnmpti |
|- ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) |
| 70 |
|
eqfnfv |
|- ( ( ( G ` M ) Fn ( M ... M ) /\ ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) ) -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
| 71 |
67 69 70
|
sylancl |
|- ( ph -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) ) |
| 72 |
66 71
|
mpbird |
|- ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) |
| 73 |
72
|
a1i |
|- ( M e. ZZ -> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 74 |
1
|
eleq2i |
|- ( w e. Z <-> w e. ( ZZ>= ` M ) ) |
| 75 |
13
|
ffvelcdmda |
|- ( ( ph /\ w e. Z ) -> ( G ` w ) e. J ) |
| 76 |
|
simpr |
|- ( ( ph /\ w e. Z ) -> w e. Z ) |
| 77 |
|
3simpa |
|- ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
| 78 |
77
|
reximi |
|- ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
| 79 |
78
|
ss2abi |
|- { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } |
| 80 |
1
|
fvexi |
|- Z e. _V |
| 81 |
|
nfv |
|- F/ k w e. Z |
| 82 |
12 81
|
nfan |
|- F/ k ( ph /\ w e. Z ) |
| 83 |
6
|
adantr |
|- ( ( ph /\ w e. Z ) -> A e. V ) |
| 84 |
|
simpl |
|- ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h : ( M ... ( k + 1 ) ) --> A ) |
| 85 |
|
ovex |
|- ( M ... ( k + 1 ) ) e. _V |
| 86 |
|
elmapg |
|- ( ( A e. V /\ ( M ... ( k + 1 ) ) e. _V ) -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) |
| 87 |
85 86
|
mpan2 |
|- ( A e. V -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) ) |
| 88 |
84 87
|
imbitrrid |
|- ( A e. V -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h e. ( A ^m ( M ... ( k + 1 ) ) ) ) ) |
| 89 |
88
|
abssdv |
|- ( A e. V -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) |
| 90 |
83 89
|
syl |
|- ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) ) |
| 91 |
|
ovex |
|- ( A ^m ( M ... ( k + 1 ) ) ) e. _V |
| 92 |
|
ssexg |
|- ( ( { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) /\ ( A ^m ( M ... ( k + 1 ) ) ) e. _V ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
| 93 |
90 91 92
|
sylancl |
|- ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
| 94 |
93
|
a1d |
|- ( ( ph /\ w e. Z ) -> ( k e. Z -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) ) |
| 95 |
82 94
|
ralrimi |
|- ( ( ph /\ w e. Z ) -> A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
| 96 |
|
abrexex2g |
|- ( ( Z e. _V /\ A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
| 97 |
80 95 96
|
sylancr |
|- ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) |
| 98 |
|
ssexg |
|- ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) |
| 99 |
79 97 98
|
sylancr |
|- ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) |
| 100 |
|
eqeq1 |
|- ( x = ( G ` w ) -> ( x = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( h |` ( M ... k ) ) ) ) |
| 101 |
100
|
3anbi2d |
|- ( x = ( G ` w ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 102 |
101
|
rexbidv |
|- ( x = ( G ` w ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) ) |
| 103 |
102
|
abbidv |
|- ( x = ( G ` w ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) |
| 104 |
103
|
eleq1d |
|- ( x = ( G ` w ) -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) ) |
| 105 |
|
oveq2 |
|- ( x = ( G ` w ) -> ( w F x ) = ( w F ( G ` w ) ) ) |
| 106 |
105 103
|
eqeq12d |
|- ( x = ( G ` w ) -> ( ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } <-> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) |
| 107 |
104 106
|
imbi12d |
|- ( x = ( G ` w ) -> ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) <-> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
| 108 |
107
|
imbi2d |
|- ( x = ( G ` w ) -> ( ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) <-> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) ) |
| 109 |
11
|
ovmpt4g |
|- ( ( w e. Z /\ x e. J /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
| 110 |
109
|
3com12 |
|- ( ( x e. J /\ w e. Z /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) |
| 111 |
110
|
3exp |
|- ( x e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
| 112 |
108 111
|
vtoclga |
|- ( ( G ` w ) e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) |
| 113 |
75 76 99 112
|
syl3c |
|- ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) |
| 114 |
113 79
|
eqsstrdi |
|- ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) |
| 115 |
114 15
|
sseldd |
|- ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } ) |
| 116 |
|
fvex |
|- ( G ` ( w + 1 ) ) e. _V |
| 117 |
|
feq1 |
|- ( h = ( G ` ( w + 1 ) ) -> ( h : ( M ... ( k + 1 ) ) --> A <-> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) ) |
| 118 |
|
reseq1 |
|- ( h = ( G ` ( w + 1 ) ) -> ( h |` ( M ... k ) ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) |
| 119 |
118
|
eqeq2d |
|- ( h = ( G ` ( w + 1 ) ) -> ( ( G ` w ) = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
| 120 |
117 119
|
anbi12d |
|- ( h = ( G ` ( w + 1 ) ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) |
| 121 |
120
|
rexbidv |
|- ( h = ( G ` ( w + 1 ) ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) ) |
| 122 |
116 121
|
elab |
|- ( ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
| 123 |
115 122
|
sylib |
|- ( ( ph /\ w e. Z ) -> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) |
| 124 |
|
nfv |
|- F/ k ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
| 125 |
|
simprl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) |
| 126 |
|
fzssp1 |
|- ( M ... k ) C_ ( M ... ( k + 1 ) ) |
| 127 |
|
fssres |
|- ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( M ... k ) C_ ( M ... ( k + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) |
| 128 |
125 126 127
|
sylancl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A ) |
| 129 |
128
|
fdmd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... k ) ) |
| 130 |
|
eqid |
|- ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) |
| 131 |
68 130
|
fnmpti |
|- ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) |
| 132 |
|
simprr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
| 133 |
132
|
fneq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) <-> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) ) ) |
| 134 |
131 133
|
mpbiri |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) ) |
| 135 |
134
|
fndmd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... w ) ) |
| 136 |
129 135
|
eqtr3d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... k ) = ( M ... w ) ) |
| 137 |
|
simplr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. Z ) |
| 138 |
137 1
|
eleqtrdi |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 139 |
|
fzopth |
|- ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) |
| 140 |
138 139
|
syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) ) |
| 141 |
136 140
|
mpbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M = M /\ k = w ) ) |
| 142 |
141
|
simprd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k = w ) |
| 143 |
142
|
oveq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( k + 1 ) = ( w + 1 ) ) |
| 144 |
143
|
oveq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) ) |
| 145 |
|
elfzp1 |
|- ( k e. ( ZZ>= ` M ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) |
| 146 |
138 145
|
syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) ) |
| 147 |
136
|
reseq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) ) |
| 148 |
|
fzssp1 |
|- ( M ... w ) C_ ( M ... ( w + 1 ) ) |
| 149 |
|
resmpt |
|- ( ( M ... w ) C_ ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) |
| 150 |
148 149
|
ax-mp |
|- ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) |
| 151 |
147 150
|
eqtr2di |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) |
| 152 |
132 151
|
eqtrd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ) |
| 153 |
152
|
fveq1d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) ) |
| 154 |
|
fvres |
|- ( x e. ( M ... k ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` x ) ) |
| 155 |
|
fvres |
|- ( x e. ( M ... k ) -> ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) |
| 156 |
154 155
|
eqeq12d |
|- ( x e. ( M ... k ) -> ( ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 157 |
153 156
|
syl5ibcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... k ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 158 |
143
|
eqeq2d |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) <-> x = ( w + 1 ) ) ) |
| 159 |
142 138
|
eqeltrrd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> w e. ( ZZ>= ` M ) ) |
| 160 |
|
peano2uz |
|- ( w e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( ZZ>= ` M ) ) |
| 161 |
|
eluzfz2 |
|- ( ( w + 1 ) e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( M ... ( w + 1 ) ) ) |
| 162 |
|
fveq2 |
|- ( m = ( w + 1 ) -> ( G ` m ) = ( G ` ( w + 1 ) ) ) |
| 163 |
|
id |
|- ( m = ( w + 1 ) -> m = ( w + 1 ) ) |
| 164 |
162 163
|
fveq12d |
|- ( m = ( w + 1 ) -> ( ( G ` m ) ` m ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
| 165 |
|
eqid |
|- ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |
| 166 |
|
fvex |
|- ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) e. _V |
| 167 |
164 165 166
|
fvmpt |
|- ( ( w + 1 ) e. ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
| 168 |
159 160 161 167
|
4syl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
| 169 |
168
|
eqcomd |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) |
| 170 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) ) |
| 171 |
|
fveq2 |
|- ( x = ( w + 1 ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) |
| 172 |
170 171
|
eqeq12d |
|- ( x = ( w + 1 ) -> ( ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) ) |
| 173 |
169 172
|
syl5ibrcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 174 |
158 173
|
sylbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 175 |
157 174
|
jaod |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( x e. ( M ... k ) \/ x = ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 176 |
146 175
|
sylbid |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) |
| 177 |
176
|
ralrimiv |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) |
| 178 |
|
ffn |
|- ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) |
| 179 |
178
|
ad2antrl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) ) |
| 180 |
68 165
|
fnmpti |
|- ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) |
| 181 |
|
eqfnfv2 |
|- ( ( ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) /\ ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) |
| 182 |
179 180 181
|
sylancl |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) ) |
| 183 |
144 177 182
|
mpbir2and |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) |
| 184 |
183
|
expr |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 185 |
|
eqeq1 |
|- ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) <-> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 186 |
185
|
imbi1d |
|- ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 187 |
184 186
|
syl5ibrcom |
|- ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 188 |
187
|
expimpd |
|- ( ( ( ph /\ w e. Z ) /\ k e. Z ) -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 189 |
188
|
ex |
|- ( ( ph /\ w e. Z ) -> ( k e. Z -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) ) |
| 190 |
82 124 189
|
rexlimd |
|- ( ( ph /\ w e. Z ) -> ( E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 191 |
123 190
|
mpd |
|- ( ( ph /\ w e. Z ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 192 |
191
|
expcom |
|- ( w e. Z -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 193 |
74 192
|
sylbir |
|- ( w e. ( ZZ>= ` M ) -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 194 |
193
|
a2d |
|- ( w e. ( ZZ>= ` M ) -> ( ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) -> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) |
| 195 |
37 42 47 52 73 194
|
uzind4 |
|- ( k e. ( ZZ>= ` M ) -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 196 |
195 1
|
eleq2s |
|- ( k e. Z -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) |
| 197 |
196
|
impcom |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
| 198 |
197
|
dmeqd |
|- ( ( ph /\ k e. Z ) -> dom ( G ` k ) = dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
| 199 |
|
dmmptg |
|- ( A. m e. ( M ... k ) ( ( G ` m ) ` m ) e. _V -> dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) ) |
| 200 |
68
|
a1i |
|- ( m e. ( M ... k ) -> ( ( G ` m ) ` m ) e. _V ) |
| 201 |
199 200
|
mprg |
|- dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) |
| 202 |
198 201
|
eqtrdi |
|- ( ( ph /\ k e. Z ) -> dom ( G ` k ) = ( M ... k ) ) |
| 203 |
202
|
eqeq1d |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M ... k ) = ( M ... n ) ) ) |
| 204 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
| 205 |
204 1
|
eleqtrdi |
|- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
| 206 |
|
fzopth |
|- ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
| 207 |
205 206
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
| 208 |
203 207
|
bitrd |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) ) |
| 209 |
|
simpr |
|- ( ( M = M /\ k = n ) -> k = n ) |
| 210 |
208 209
|
biimtrdi |
|- ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) -> k = n ) ) |
| 211 |
32 210
|
syl5 |
|- ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> k = n ) ) |
| 212 |
|
oveq2 |
|- ( n = k -> ( M ... n ) = ( M ... k ) ) |
| 213 |
212
|
feq2d |
|- ( n = k -> ( ( G ` k ) : ( M ... n ) --> A <-> ( G ` k ) : ( M ... k ) --> A ) ) |
| 214 |
4
|
sbcbidv |
|- ( n = k -> ( [. ( G ` k ) / g ]. ps <-> [. ( G ` k ) / g ]. th ) ) |
| 215 |
213 214
|
anbi12d |
|- ( n = k -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
| 216 |
215
|
equcoms |
|- ( k = n -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
| 217 |
216
|
biimpcd |
|- ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( k = n -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
| 218 |
211 217
|
sylcom |
|- ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
| 219 |
218
|
rexlimdvw |
|- ( ( ph /\ k e. Z ) -> ( E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) ) |
| 220 |
30 219
|
mpd |
|- ( ( ph /\ k e. Z ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) |
| 221 |
220
|
simpld |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) : ( M ... k ) --> A ) |
| 222 |
|
eluzfz2 |
|- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
| 223 |
205 222
|
syl |
|- ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) |
| 224 |
221 223
|
ffvelcdmd |
|- ( ( ph /\ k e. Z ) -> ( ( G ` k ) ` k ) e. A ) |
| 225 |
55
|
cbvmptv |
|- ( m e. Z |-> ( ( G ` m ) ` m ) ) = ( k e. Z |-> ( ( G ` k ) ` k ) ) |
| 226 |
12 224 225
|
fmptdf |
|- ( ph -> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) |
| 227 |
220
|
simprd |
|- ( ( ph /\ k e. Z ) -> [. ( G ` k ) / g ]. th ) |
| 228 |
197 227
|
sbceq1dd |
|- ( ( ph /\ k e. Z ) -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
| 229 |
228
|
ex |
|- ( ph -> ( k e. Z -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
| 230 |
12 229
|
ralrimi |
|- ( ph -> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
| 231 |
|
mpteq1 |
|- ( ( M ... n ) = ( M ... k ) -> ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) |
| 232 |
|
dfsbcq |
|- ( ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
| 233 |
212 231 232
|
3syl |
|- ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
| 234 |
4
|
sbcbidv |
|- ( n = k -> ( [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
| 235 |
233 234
|
bitrd |
|- ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) ) |
| 236 |
235
|
cbvralvw |
|- ( A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) |
| 237 |
230 236
|
sylibr |
|- ( ph -> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) |
| 238 |
80
|
mptex |
|- ( m e. Z |-> ( ( G ` m ) ` m ) ) e. _V |
| 239 |
|
feq1 |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f : Z --> A <-> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) ) |
| 240 |
|
vex |
|- f e. _V |
| 241 |
240
|
resex |
|- ( f |` ( M ... n ) ) e. _V |
| 242 |
241 2
|
sbcie |
|- ( [. ( f |` ( M ... n ) ) / g ]. ps <-> ch ) |
| 243 |
|
reseq1 |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) ) |
| 244 |
|
fzssuz |
|- ( M ... n ) C_ ( ZZ>= ` M ) |
| 245 |
244 1
|
sseqtrri |
|- ( M ... n ) C_ Z |
| 246 |
|
resmpt |
|- ( ( M ... n ) C_ Z -> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) |
| 247 |
245 246
|
ax-mp |
|- ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) |
| 248 |
243 247
|
eqtrdi |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) ) |
| 249 |
248
|
sbceq1d |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( [. ( f |` ( M ... n ) ) / g ]. ps <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
| 250 |
242 249
|
bitr3id |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ch <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
| 251 |
250
|
ralbidv |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( A. n e. Z ch <-> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) |
| 252 |
239 251
|
anbi12d |
|- ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ( f : Z --> A /\ A. n e. Z ch ) <-> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) ) |
| 253 |
238 252
|
spcev |
|- ( ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |
| 254 |
226 237 253
|
syl2anc |
|- ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) ) |