Metamath Proof Explorer


Theorem sdclem2

Description: Lemma for sdc . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sdc.1
|- Z = ( ZZ>= ` M )
sdc.2
|- ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) )
sdc.3
|- ( n = M -> ( ps <-> ta ) )
sdc.4
|- ( n = k -> ( ps <-> th ) )
sdc.5
|- ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) )
sdc.6
|- ( ph -> A e. V )
sdc.7
|- ( ph -> M e. ZZ )
sdc.8
|- ( ph -> E. g ( g : { M } --> A /\ ta ) )
sdc.9
|- ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) )
sdc.10
|- J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) }
sdc.11
|- F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } )
sdc.12
|- F/ k ph
sdc.13
|- ( ph -> G : Z --> J )
sdc.14
|- ( ph -> ( G ` M ) : ( M ... M ) --> A )
sdc.15
|- ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. ( w F ( G ` w ) ) )
Assertion sdclem2
|- ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) )

Proof

Step Hyp Ref Expression
1 sdc.1
 |-  Z = ( ZZ>= ` M )
2 sdc.2
 |-  ( g = ( f |` ( M ... n ) ) -> ( ps <-> ch ) )
3 sdc.3
 |-  ( n = M -> ( ps <-> ta ) )
4 sdc.4
 |-  ( n = k -> ( ps <-> th ) )
5 sdc.5
 |-  ( ( g = h /\ n = ( k + 1 ) ) -> ( ps <-> si ) )
6 sdc.6
 |-  ( ph -> A e. V )
7 sdc.7
 |-  ( ph -> M e. ZZ )
8 sdc.8
 |-  ( ph -> E. g ( g : { M } --> A /\ ta ) )
9 sdc.9
 |-  ( ( ph /\ k e. Z ) -> ( ( g : ( M ... k ) --> A /\ th ) -> E. h ( h : ( M ... ( k + 1 ) ) --> A /\ g = ( h |` ( M ... k ) ) /\ si ) ) )
10 sdc.10
 |-  J = { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) }
11 sdc.11
 |-  F = ( w e. Z , x e. J |-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } )
12 sdc.12
 |-  F/ k ph
13 sdc.13
 |-  ( ph -> G : Z --> J )
14 sdc.14
 |-  ( ph -> ( G ` M ) : ( M ... M ) --> A )
15 sdc.15
 |-  ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. ( w F ( G ` w ) ) )
16 13 ffvelrnda
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. J )
17 10 eleq2i
 |-  ( ( G ` k ) e. J <-> ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } )
18 nfcv
 |-  F/_ g Z
19 nfv
 |-  F/ g ( G ` k ) : ( M ... n ) --> A
20 nfsbc1v
 |-  F/ g [. ( G ` k ) / g ]. ps
21 19 20 nfan
 |-  F/ g ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps )
22 18 21 nfrex
 |-  F/ g E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps )
23 fvex
 |-  ( G ` k ) e. _V
24 feq1
 |-  ( g = ( G ` k ) -> ( g : ( M ... n ) --> A <-> ( G ` k ) : ( M ... n ) --> A ) )
25 sbceq1a
 |-  ( g = ( G ` k ) -> ( ps <-> [. ( G ` k ) / g ]. ps ) )
26 24 25 anbi12d
 |-  ( g = ( G ` k ) -> ( ( g : ( M ... n ) --> A /\ ps ) <-> ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) )
27 26 rexbidv
 |-  ( g = ( G ` k ) -> ( E. n e. Z ( g : ( M ... n ) --> A /\ ps ) <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) ) )
28 22 23 27 elabf
 |-  ( ( G ` k ) e. { g | E. n e. Z ( g : ( M ... n ) --> A /\ ps ) } <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) )
29 17 28 bitri
 |-  ( ( G ` k ) e. J <-> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) )
30 16 29 sylib
 |-  ( ( ph /\ k e. Z ) -> E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) )
31 fdm
 |-  ( ( G ` k ) : ( M ... n ) --> A -> dom ( G ` k ) = ( M ... n ) )
32 31 adantr
 |-  ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> dom ( G ` k ) = ( M ... n ) )
33 fveq2
 |-  ( x = M -> ( G ` x ) = ( G ` M ) )
34 oveq2
 |-  ( x = M -> ( M ... x ) = ( M ... M ) )
35 34 mpteq1d
 |-  ( x = M -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) )
36 33 35 eqeq12d
 |-  ( x = M -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) )
37 36 imbi2d
 |-  ( x = M -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) ) )
38 fveq2
 |-  ( x = w -> ( G ` x ) = ( G ` w ) )
39 oveq2
 |-  ( x = w -> ( M ... x ) = ( M ... w ) )
40 39 mpteq1d
 |-  ( x = w -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) )
41 38 40 eqeq12d
 |-  ( x = w -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) )
42 41 imbi2d
 |-  ( x = w -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) )
43 fveq2
 |-  ( x = ( w + 1 ) -> ( G ` x ) = ( G ` ( w + 1 ) ) )
44 oveq2
 |-  ( x = ( w + 1 ) -> ( M ... x ) = ( M ... ( w + 1 ) ) )
45 44 mpteq1d
 |-  ( x = ( w + 1 ) -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) )
46 43 45 eqeq12d
 |-  ( x = ( w + 1 ) -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) )
47 46 imbi2d
 |-  ( x = ( w + 1 ) -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
48 fveq2
 |-  ( x = k -> ( G ` x ) = ( G ` k ) )
49 oveq2
 |-  ( x = k -> ( M ... x ) = ( M ... k ) )
50 49 mpteq1d
 |-  ( x = k -> ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) )
51 48 50 eqeq12d
 |-  ( x = k -> ( ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) <-> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) )
52 51 imbi2d
 |-  ( x = k -> ( ( ph -> ( G ` x ) = ( m e. ( M ... x ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) ) )
53 fveq2
 |-  ( m = k -> ( G ` m ) = ( G ` k ) )
54 id
 |-  ( m = k -> m = k )
55 53 54 fveq12d
 |-  ( m = k -> ( ( G ` m ) ` m ) = ( ( G ` k ) ` k ) )
56 eqid
 |-  ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) )
57 fvex
 |-  ( ( G ` k ) ` k ) e. _V
58 55 56 57 fvmpt
 |-  ( k e. ( M ... M ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) )
59 58 adantl
 |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) = ( ( G ` k ) ` k ) )
60 elfz1eq
 |-  ( k e. ( M ... M ) -> k = M )
61 60 adantl
 |-  ( ( ph /\ k e. ( M ... M ) ) -> k = M )
62 61 fveq2d
 |-  ( ( ph /\ k e. ( M ... M ) ) -> ( G ` k ) = ( G ` M ) )
63 62 fveq1d
 |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` k ) ` k ) = ( ( G ` M ) ` k ) )
64 59 63 eqtr2d
 |-  ( ( ph /\ k e. ( M ... M ) ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) )
65 64 ex
 |-  ( ph -> ( k e. ( M ... M ) -> ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) )
66 12 65 ralrimi
 |-  ( ph -> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) )
67 14 ffnd
 |-  ( ph -> ( G ` M ) Fn ( M ... M ) )
68 fvex
 |-  ( ( G ` m ) ` m ) e. _V
69 68 56 fnmpti
 |-  ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M )
70 eqfnfv
 |-  ( ( ( G ` M ) Fn ( M ... M ) /\ ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... M ) ) -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) )
71 67 69 70 sylancl
 |-  ( ph -> ( ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) <-> A. k e. ( M ... M ) ( ( G ` M ) ` k ) = ( ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ` k ) ) )
72 66 71 mpbird
 |-  ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) )
73 72 a1i
 |-  ( M e. ZZ -> ( ph -> ( G ` M ) = ( m e. ( M ... M ) |-> ( ( G ` m ) ` m ) ) ) )
74 1 eleq2i
 |-  ( w e. Z <-> w e. ( ZZ>= ` M ) )
75 13 ffvelrnda
 |-  ( ( ph /\ w e. Z ) -> ( G ` w ) e. J )
76 simpr
 |-  ( ( ph /\ w e. Z ) -> w e. Z )
77 3simpa
 |-  ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) )
78 77 reximi
 |-  ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) -> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) )
79 78 ss2abi
 |-  { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) }
80 1 fvexi
 |-  Z e. _V
81 nfv
 |-  F/ k w e. Z
82 12 81 nfan
 |-  F/ k ( ph /\ w e. Z )
83 6 adantr
 |-  ( ( ph /\ w e. Z ) -> A e. V )
84 simpl
 |-  ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h : ( M ... ( k + 1 ) ) --> A )
85 ovex
 |-  ( M ... ( k + 1 ) ) e. _V
86 elmapg
 |-  ( ( A e. V /\ ( M ... ( k + 1 ) ) e. _V ) -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) )
87 85 86 mpan2
 |-  ( A e. V -> ( h e. ( A ^m ( M ... ( k + 1 ) ) ) <-> h : ( M ... ( k + 1 ) ) --> A ) )
88 84 87 syl5ibr
 |-  ( A e. V -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) -> h e. ( A ^m ( M ... ( k + 1 ) ) ) ) )
89 88 abssdv
 |-  ( A e. V -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) )
90 83 89 syl
 |-  ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) )
91 ovex
 |-  ( A ^m ( M ... ( k + 1 ) ) ) e. _V
92 ssexg
 |-  ( ( { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } C_ ( A ^m ( M ... ( k + 1 ) ) ) /\ ( A ^m ( M ... ( k + 1 ) ) ) e. _V ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V )
93 90 91 92 sylancl
 |-  ( ( ph /\ w e. Z ) -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V )
94 93 a1d
 |-  ( ( ph /\ w e. Z ) -> ( k e. Z -> { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) )
95 82 94 ralrimi
 |-  ( ( ph /\ w e. Z ) -> A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V )
96 abrexex2g
 |-  ( ( Z e. _V /\ A. k e. Z { h | ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V )
97 80 95 96 sylancr
 |-  ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V )
98 ssexg
 |-  ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } e. _V ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V )
99 79 97 98 sylancr
 |-  ( ( ph /\ w e. Z ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V )
100 eqeq1
 |-  ( x = ( G ` w ) -> ( x = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( h |` ( M ... k ) ) ) )
101 100 3anbi2d
 |-  ( x = ( G ` w ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) )
102 101 rexbidv
 |-  ( x = ( G ` w ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) <-> E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) ) )
103 102 abbidv
 |-  ( x = ( G ` w ) -> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } )
104 103 eleq1d
 |-  ( x = ( G ` w ) -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V <-> { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V ) )
105 oveq2
 |-  ( x = ( G ` w ) -> ( w F x ) = ( w F ( G ` w ) ) )
106 105 103 eqeq12d
 |-  ( x = ( G ` w ) -> ( ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } <-> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) )
107 104 106 imbi12d
 |-  ( x = ( G ` w ) -> ( ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) <-> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) )
108 107 imbi2d
 |-  ( x = ( G ` w ) -> ( ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) <-> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) ) )
109 11 ovmpt4g
 |-  ( ( w e. Z /\ x e. J /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } )
110 109 3com12
 |-  ( ( x e. J /\ w e. Z /\ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V ) -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } )
111 110 3exp
 |-  ( x e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F x ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ x = ( h |` ( M ... k ) ) /\ si ) } ) ) )
112 108 111 vtoclga
 |-  ( ( G ` w ) e. J -> ( w e. Z -> ( { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } e. _V -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } ) ) )
113 75 76 99 112 syl3c
 |-  ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) = { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) /\ si ) } )
114 113 79 eqsstrdi
 |-  ( ( ph /\ w e. Z ) -> ( w F ( G ` w ) ) C_ { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } )
115 114 15 sseldd
 |-  ( ( ph /\ w e. Z ) -> ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } )
116 fvex
 |-  ( G ` ( w + 1 ) ) e. _V
117 feq1
 |-  ( h = ( G ` ( w + 1 ) ) -> ( h : ( M ... ( k + 1 ) ) --> A <-> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) )
118 reseq1
 |-  ( h = ( G ` ( w + 1 ) ) -> ( h |` ( M ... k ) ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) )
119 118 eqeq2d
 |-  ( h = ( G ` ( w + 1 ) ) -> ( ( G ` w ) = ( h |` ( M ... k ) ) <-> ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) )
120 117 119 anbi12d
 |-  ( h = ( G ` ( w + 1 ) ) -> ( ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) )
121 120 rexbidv
 |-  ( h = ( G ` ( w + 1 ) ) -> ( E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) ) )
122 116 121 elab
 |-  ( ( G ` ( w + 1 ) ) e. { h | E. k e. Z ( h : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( h |` ( M ... k ) ) ) } <-> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) )
123 115 122 sylib
 |-  ( ( ph /\ w e. Z ) -> E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) )
124 nfv
 |-  F/ k ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) )
125 simprl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A )
126 fzssp1
 |-  ( M ... k ) C_ ( M ... ( k + 1 ) )
127 fssres
 |-  ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( M ... k ) C_ ( M ... ( k + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A )
128 125 126 127 sylancl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) : ( M ... k ) --> A )
129 128 fdmd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... k ) )
130 eqid
 |-  ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) )
131 68 130 fnmpti
 |-  ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w )
132 simprr
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) )
133 132 fneq1d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) <-> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... w ) ) )
134 131 133 mpbiri
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) Fn ( M ... w ) )
135 134 fndmd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> dom ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( M ... w ) )
136 129 135 eqtr3d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... k ) = ( M ... w ) )
137 simplr
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. Z )
138 137 1 eleqtrdi
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k e. ( ZZ>= ` M ) )
139 fzopth
 |-  ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) )
140 138 139 syl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( M ... k ) = ( M ... w ) <-> ( M = M /\ k = w ) ) )
141 136 140 mpbid
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M = M /\ k = w ) )
142 141 simprd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> k = w )
143 142 oveq1d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( k + 1 ) = ( w + 1 ) )
144 143 oveq2d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) )
145 elfzp1
 |-  ( k e. ( ZZ>= ` M ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) )
146 138 145 syl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) <-> ( x e. ( M ... k ) \/ x = ( k + 1 ) ) ) )
147 136 reseq2d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) )
148 fzssp1
 |-  ( M ... w ) C_ ( M ... ( w + 1 ) )
149 resmpt
 |-  ( ( M ... w ) C_ ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) )
150 148 149 ax-mp
 |-  ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... w ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) )
151 147 150 eqtr2di
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) )
152 132 151 eqtrd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) )
153 152 fveq1d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) )
154 fvres
 |-  ( x e. ( M ... k ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` x ) )
155 fvres
 |-  ( x e. ( M ... k ) -> ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) )
156 154 155 eqeq12d
 |-  ( x e. ( M ... k ) -> ( ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ` x ) = ( ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) |` ( M ... k ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
157 153 156 syl5ibcom
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... k ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
158 143 eqeq2d
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) <-> x = ( w + 1 ) ) )
159 142 138 eqeltrrd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> w e. ( ZZ>= ` M ) )
160 peano2uz
 |-  ( w e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( ZZ>= ` M ) )
161 eluzfz2
 |-  ( ( w + 1 ) e. ( ZZ>= ` M ) -> ( w + 1 ) e. ( M ... ( w + 1 ) ) )
162 fveq2
 |-  ( m = ( w + 1 ) -> ( G ` m ) = ( G ` ( w + 1 ) ) )
163 id
 |-  ( m = ( w + 1 ) -> m = ( w + 1 ) )
164 162 163 fveq12d
 |-  ( m = ( w + 1 ) -> ( ( G ` m ) ` m ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) )
165 eqid
 |-  ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) )
166 fvex
 |-  ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) e. _V
167 164 165 166 fvmpt
 |-  ( ( w + 1 ) e. ( M ... ( w + 1 ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) )
168 159 160 161 167 4syl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) )
169 168 eqcomd
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) )
170 fveq2
 |-  ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) )
171 fveq2
 |-  ( x = ( w + 1 ) -> ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) )
172 170 171 eqeq12d
 |-  ( x = ( w + 1 ) -> ( ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) <-> ( ( G ` ( w + 1 ) ) ` ( w + 1 ) ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` ( w + 1 ) ) ) )
173 169 172 syl5ibrcom
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( w + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
174 158 173 sylbid
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x = ( k + 1 ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
175 157 174 jaod
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( x e. ( M ... k ) \/ x = ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
176 146 175 sylbid
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( x e. ( M ... ( k + 1 ) ) -> ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) )
177 176 ralrimiv
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) )
178 ffn
 |-  ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) )
179 178 ad2antrl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) )
180 68 165 fnmpti
 |-  ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) )
181 eqfnfv2
 |-  ( ( ( G ` ( w + 1 ) ) Fn ( M ... ( k + 1 ) ) /\ ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) Fn ( M ... ( w + 1 ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) )
182 179 180 181 sylancl
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) <-> ( ( M ... ( k + 1 ) ) = ( M ... ( w + 1 ) ) /\ A. x e. ( M ... ( k + 1 ) ) ( ( G ` ( w + 1 ) ) ` x ) = ( ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ` x ) ) ) )
183 144 177 182 mpbir2and
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) )
184 183 expr
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) )
185 eqeq1
 |-  ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) <-> ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) )
186 185 imbi1d
 |-  ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) <-> ( ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
187 184 186 syl5ibrcom
 |-  ( ( ( ( ph /\ w e. Z ) /\ k e. Z ) /\ ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A ) -> ( ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
188 187 expimpd
 |-  ( ( ( ph /\ w e. Z ) /\ k e. Z ) -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
189 188 ex
 |-  ( ( ph /\ w e. Z ) -> ( k e. Z -> ( ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) ) )
190 82 124 189 rexlimd
 |-  ( ( ph /\ w e. Z ) -> ( E. k e. Z ( ( G ` ( w + 1 ) ) : ( M ... ( k + 1 ) ) --> A /\ ( G ` w ) = ( ( G ` ( w + 1 ) ) |` ( M ... k ) ) ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
191 123 190 mpd
 |-  ( ( ph /\ w e. Z ) -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) )
192 191 expcom
 |-  ( w e. Z -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
193 74 192 sylbir
 |-  ( w e. ( ZZ>= ` M ) -> ( ph -> ( ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
194 193 a2d
 |-  ( w e. ( ZZ>= ` M ) -> ( ( ph -> ( G ` w ) = ( m e. ( M ... w ) |-> ( ( G ` m ) ` m ) ) ) -> ( ph -> ( G ` ( w + 1 ) ) = ( m e. ( M ... ( w + 1 ) ) |-> ( ( G ` m ) ` m ) ) ) ) )
195 37 42 47 52 73 194 uzind4
 |-  ( k e. ( ZZ>= ` M ) -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) )
196 195 1 eleq2s
 |-  ( k e. Z -> ( ph -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) ) )
197 196 impcom
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) )
198 197 dmeqd
 |-  ( ( ph /\ k e. Z ) -> dom ( G ` k ) = dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) )
199 dmmptg
 |-  ( A. m e. ( M ... k ) ( ( G ` m ) ` m ) e. _V -> dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k ) )
200 68 a1i
 |-  ( m e. ( M ... k ) -> ( ( G ` m ) ` m ) e. _V )
201 199 200 mprg
 |-  dom ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) = ( M ... k )
202 198 201 eqtrdi
 |-  ( ( ph /\ k e. Z ) -> dom ( G ` k ) = ( M ... k ) )
203 202 eqeq1d
 |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M ... k ) = ( M ... n ) ) )
204 simpr
 |-  ( ( ph /\ k e. Z ) -> k e. Z )
205 204 1 eleqtrdi
 |-  ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) )
206 fzopth
 |-  ( k e. ( ZZ>= ` M ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) )
207 205 206 syl
 |-  ( ( ph /\ k e. Z ) -> ( ( M ... k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) )
208 203 207 bitrd
 |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) <-> ( M = M /\ k = n ) ) )
209 simpr
 |-  ( ( M = M /\ k = n ) -> k = n )
210 208 209 syl6bi
 |-  ( ( ph /\ k e. Z ) -> ( dom ( G ` k ) = ( M ... n ) -> k = n ) )
211 32 210 syl5
 |-  ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> k = n ) )
212 oveq2
 |-  ( n = k -> ( M ... n ) = ( M ... k ) )
213 212 feq2d
 |-  ( n = k -> ( ( G ` k ) : ( M ... n ) --> A <-> ( G ` k ) : ( M ... k ) --> A ) )
214 4 sbcbidv
 |-  ( n = k -> ( [. ( G ` k ) / g ]. ps <-> [. ( G ` k ) / g ]. th ) )
215 213 214 anbi12d
 |-  ( n = k -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) )
216 215 equcoms
 |-  ( k = n -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) <-> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) )
217 216 biimpcd
 |-  ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( k = n -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) )
218 211 217 sylcom
 |-  ( ( ph /\ k e. Z ) -> ( ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) )
219 218 rexlimdvw
 |-  ( ( ph /\ k e. Z ) -> ( E. n e. Z ( ( G ` k ) : ( M ... n ) --> A /\ [. ( G ` k ) / g ]. ps ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) ) )
220 30 219 mpd
 |-  ( ( ph /\ k e. Z ) -> ( ( G ` k ) : ( M ... k ) --> A /\ [. ( G ` k ) / g ]. th ) )
221 220 simpld
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) : ( M ... k ) --> A )
222 eluzfz2
 |-  ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) )
223 205 222 syl
 |-  ( ( ph /\ k e. Z ) -> k e. ( M ... k ) )
224 221 223 ffvelrnd
 |-  ( ( ph /\ k e. Z ) -> ( ( G ` k ) ` k ) e. A )
225 55 cbvmptv
 |-  ( m e. Z |-> ( ( G ` m ) ` m ) ) = ( k e. Z |-> ( ( G ` k ) ` k ) )
226 12 224 225 fmptdf
 |-  ( ph -> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A )
227 220 simprd
 |-  ( ( ph /\ k e. Z ) -> [. ( G ` k ) / g ]. th )
228 197 227 sbceq1dd
 |-  ( ( ph /\ k e. Z ) -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th )
229 228 ex
 |-  ( ph -> ( k e. Z -> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) )
230 12 229 ralrimi
 |-  ( ph -> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th )
231 mpteq1
 |-  ( ( M ... n ) = ( M ... k ) -> ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) )
232 dfsbcq
 |-  ( ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) = ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) )
233 212 231 232 3syl
 |-  ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) )
234 4 sbcbidv
 |-  ( n = k -> ( [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) )
235 233 234 bitrd
 |-  ( n = k -> ( [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th ) )
236 235 cbvralvw
 |-  ( A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps <-> A. k e. Z [. ( m e. ( M ... k ) |-> ( ( G ` m ) ` m ) ) / g ]. th )
237 230 236 sylibr
 |-  ( ph -> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps )
238 80 mptex
 |-  ( m e. Z |-> ( ( G ` m ) ` m ) ) e. _V
239 feq1
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f : Z --> A <-> ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A ) )
240 vex
 |-  f e. _V
241 240 resex
 |-  ( f |` ( M ... n ) ) e. _V
242 241 2 sbcie
 |-  ( [. ( f |` ( M ... n ) ) / g ]. ps <-> ch )
243 reseq1
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) )
244 fzssuz
 |-  ( M ... n ) C_ ( ZZ>= ` M )
245 244 1 sseqtrri
 |-  ( M ... n ) C_ Z
246 resmpt
 |-  ( ( M ... n ) C_ Z -> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) )
247 245 246 ax-mp
 |-  ( ( m e. Z |-> ( ( G ` m ) ` m ) ) |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) )
248 243 247 eqtrdi
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( f |` ( M ... n ) ) = ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) )
249 248 sbceq1d
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( [. ( f |` ( M ... n ) ) / g ]. ps <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) )
250 242 249 bitr3id
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ch <-> [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) )
251 250 ralbidv
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( A. n e. Z ch <-> A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) )
252 239 251 anbi12d
 |-  ( f = ( m e. Z |-> ( ( G ` m ) ` m ) ) -> ( ( f : Z --> A /\ A. n e. Z ch ) <-> ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) ) )
253 238 252 spcev
 |-  ( ( ( m e. Z |-> ( ( G ` m ) ` m ) ) : Z --> A /\ A. n e. Z [. ( m e. ( M ... n ) |-> ( ( G ` m ) ` m ) ) / g ]. ps ) -> E. f ( f : Z --> A /\ A. n e. Z ch ) )
254 226 237 253 syl2anc
 |-  ( ph -> E. f ( f : Z --> A /\ A. n e. Z ch ) )