Metamath Proof Explorer


Theorem sdclem2

Description: Lemma for sdc . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sdc.1 Z = M
sdc.2 g = f M n ψ χ
sdc.3 n = M ψ τ
sdc.4 n = k ψ θ
sdc.5 g = h n = k + 1 ψ σ
sdc.6 φ A V
sdc.7 φ M
sdc.8 φ g g : M A τ
sdc.9 φ k Z g : M k A θ h h : M k + 1 A g = h M k σ
sdc.10 J = g | n Z g : M n A ψ
sdc.11 F = w Z , x J h | k Z h : M k + 1 A x = h M k σ
sdc.12 k φ
sdc.13 φ G : Z J
sdc.14 φ G M : M M A
sdc.15 φ w Z G w + 1 w F G w
Assertion sdclem2 φ f f : Z A n Z χ

Proof

Step Hyp Ref Expression
1 sdc.1 Z = M
2 sdc.2 g = f M n ψ χ
3 sdc.3 n = M ψ τ
4 sdc.4 n = k ψ θ
5 sdc.5 g = h n = k + 1 ψ σ
6 sdc.6 φ A V
7 sdc.7 φ M
8 sdc.8 φ g g : M A τ
9 sdc.9 φ k Z g : M k A θ h h : M k + 1 A g = h M k σ
10 sdc.10 J = g | n Z g : M n A ψ
11 sdc.11 F = w Z , x J h | k Z h : M k + 1 A x = h M k σ
12 sdc.12 k φ
13 sdc.13 φ G : Z J
14 sdc.14 φ G M : M M A
15 sdc.15 φ w Z G w + 1 w F G w
16 13 ffvelrnda φ k Z G k J
17 10 eleq2i G k J G k g | n Z g : M n A ψ
18 nfcv _ g Z
19 nfv g G k : M n A
20 nfsbc1v g [˙ G k / g]˙ ψ
21 19 20 nfan g G k : M n A [˙ G k / g]˙ ψ
22 18 21 nfrex g n Z G k : M n A [˙ G k / g]˙ ψ
23 fvex G k V
24 feq1 g = G k g : M n A G k : M n A
25 sbceq1a g = G k ψ [˙ G k / g]˙ ψ
26 24 25 anbi12d g = G k g : M n A ψ G k : M n A [˙ G k / g]˙ ψ
27 26 rexbidv g = G k n Z g : M n A ψ n Z G k : M n A [˙ G k / g]˙ ψ
28 22 23 27 elabf G k g | n Z g : M n A ψ n Z G k : M n A [˙ G k / g]˙ ψ
29 17 28 bitri G k J n Z G k : M n A [˙ G k / g]˙ ψ
30 16 29 sylib φ k Z n Z G k : M n A [˙ G k / g]˙ ψ
31 fdm G k : M n A dom G k = M n
32 31 adantr G k : M n A [˙ G k / g]˙ ψ dom G k = M n
33 fveq2 x = M G x = G M
34 oveq2 x = M M x = M M
35 34 mpteq1d x = M m M x G m m = m M M G m m
36 33 35 eqeq12d x = M G x = m M x G m m G M = m M M G m m
37 36 imbi2d x = M φ G x = m M x G m m φ G M = m M M G m m
38 fveq2 x = w G x = G w
39 oveq2 x = w M x = M w
40 39 mpteq1d x = w m M x G m m = m M w G m m
41 38 40 eqeq12d x = w G x = m M x G m m G w = m M w G m m
42 41 imbi2d x = w φ G x = m M x G m m φ G w = m M w G m m
43 fveq2 x = w + 1 G x = G w + 1
44 oveq2 x = w + 1 M x = M w + 1
45 44 mpteq1d x = w + 1 m M x G m m = m M w + 1 G m m
46 43 45 eqeq12d x = w + 1 G x = m M x G m m G w + 1 = m M w + 1 G m m
47 46 imbi2d x = w + 1 φ G x = m M x G m m φ G w + 1 = m M w + 1 G m m
48 fveq2 x = k G x = G k
49 oveq2 x = k M x = M k
50 49 mpteq1d x = k m M x G m m = m M k G m m
51 48 50 eqeq12d x = k G x = m M x G m m G k = m M k G m m
52 51 imbi2d x = k φ G x = m M x G m m φ G k = m M k G m m
53 fveq2 m = k G m = G k
54 id m = k m = k
55 53 54 fveq12d m = k G m m = G k k
56 eqid m M M G m m = m M M G m m
57 fvex G k k V
58 55 56 57 fvmpt k M M m M M G m m k = G k k
59 58 adantl φ k M M m M M G m m k = G k k
60 elfz1eq k M M k = M
61 60 adantl φ k M M k = M
62 61 fveq2d φ k M M G k = G M
63 62 fveq1d φ k M M G k k = G M k
64 59 63 eqtr2d φ k M M G M k = m M M G m m k
65 64 ex φ k M M G M k = m M M G m m k
66 12 65 ralrimi φ k M M G M k = m M M G m m k
67 14 ffnd φ G M Fn M M
68 fvex G m m V
69 68 56 fnmpti m M M G m m Fn M M
70 eqfnfv G M Fn M M m M M G m m Fn M M G M = m M M G m m k M M G M k = m M M G m m k
71 67 69 70 sylancl φ G M = m M M G m m k M M G M k = m M M G m m k
72 66 71 mpbird φ G M = m M M G m m
73 72 a1i M φ G M = m M M G m m
74 1 eleq2i w Z w M
75 13 ffvelrnda φ w Z G w J
76 simpr φ w Z w Z
77 3simpa h : M k + 1 A G w = h M k σ h : M k + 1 A G w = h M k
78 77 reximi k Z h : M k + 1 A G w = h M k σ k Z h : M k + 1 A G w = h M k
79 78 ss2abi h | k Z h : M k + 1 A G w = h M k σ h | k Z h : M k + 1 A G w = h M k
80 1 fvexi Z V
81 nfv k w Z
82 12 81 nfan k φ w Z
83 6 adantr φ w Z A V
84 simpl h : M k + 1 A G w = h M k h : M k + 1 A
85 ovex M k + 1 V
86 elmapg A V M k + 1 V h A M k + 1 h : M k + 1 A
87 85 86 mpan2 A V h A M k + 1 h : M k + 1 A
88 84 87 syl5ibr A V h : M k + 1 A G w = h M k h A M k + 1
89 88 abssdv A V h | h : M k + 1 A G w = h M k A M k + 1
90 83 89 syl φ w Z h | h : M k + 1 A G w = h M k A M k + 1
91 ovex A M k + 1 V
92 ssexg h | h : M k + 1 A G w = h M k A M k + 1 A M k + 1 V h | h : M k + 1 A G w = h M k V
93 90 91 92 sylancl φ w Z h | h : M k + 1 A G w = h M k V
94 93 a1d φ w Z k Z h | h : M k + 1 A G w = h M k V
95 82 94 ralrimi φ w Z k Z h | h : M k + 1 A G w = h M k V
96 abrexex2g Z V k Z h | h : M k + 1 A G w = h M k V h | k Z h : M k + 1 A G w = h M k V
97 80 95 96 sylancr φ w Z h | k Z h : M k + 1 A G w = h M k V
98 ssexg h | k Z h : M k + 1 A G w = h M k σ h | k Z h : M k + 1 A G w = h M k h | k Z h : M k + 1 A G w = h M k V h | k Z h : M k + 1 A G w = h M k σ V
99 79 97 98 sylancr φ w Z h | k Z h : M k + 1 A G w = h M k σ V
100 eqeq1 x = G w x = h M k G w = h M k
101 100 3anbi2d x = G w h : M k + 1 A x = h M k σ h : M k + 1 A G w = h M k σ
102 101 rexbidv x = G w k Z h : M k + 1 A x = h M k σ k Z h : M k + 1 A G w = h M k σ
103 102 abbidv x = G w h | k Z h : M k + 1 A x = h M k σ = h | k Z h : M k + 1 A G w = h M k σ
104 103 eleq1d x = G w h | k Z h : M k + 1 A x = h M k σ V h | k Z h : M k + 1 A G w = h M k σ V
105 oveq2 x = G w w F x = w F G w
106 105 103 eqeq12d x = G w w F x = h | k Z h : M k + 1 A x = h M k σ w F G w = h | k Z h : M k + 1 A G w = h M k σ
107 104 106 imbi12d x = G w h | k Z h : M k + 1 A x = h M k σ V w F x = h | k Z h : M k + 1 A x = h M k σ h | k Z h : M k + 1 A G w = h M k σ V w F G w = h | k Z h : M k + 1 A G w = h M k σ
108 107 imbi2d x = G w w Z h | k Z h : M k + 1 A x = h M k σ V w F x = h | k Z h : M k + 1 A x = h M k σ w Z h | k Z h : M k + 1 A G w = h M k σ V w F G w = h | k Z h : M k + 1 A G w = h M k σ
109 11 ovmpt4g w Z x J h | k Z h : M k + 1 A x = h M k σ V w F x = h | k Z h : M k + 1 A x = h M k σ
110 109 3com12 x J w Z h | k Z h : M k + 1 A x = h M k σ V w F x = h | k Z h : M k + 1 A x = h M k σ
111 110 3exp x J w Z h | k Z h : M k + 1 A x = h M k σ V w F x = h | k Z h : M k + 1 A x = h M k σ
112 108 111 vtoclga G w J w Z h | k Z h : M k + 1 A G w = h M k σ V w F G w = h | k Z h : M k + 1 A G w = h M k σ
113 75 76 99 112 syl3c φ w Z w F G w = h | k Z h : M k + 1 A G w = h M k σ
114 113 79 eqsstrdi φ w Z w F G w h | k Z h : M k + 1 A G w = h M k
115 114 15 sseldd φ w Z G w + 1 h | k Z h : M k + 1 A G w = h M k
116 fvex G w + 1 V
117 feq1 h = G w + 1 h : M k + 1 A G w + 1 : M k + 1 A
118 reseq1 h = G w + 1 h M k = G w + 1 M k
119 118 eqeq2d h = G w + 1 G w = h M k G w = G w + 1 M k
120 117 119 anbi12d h = G w + 1 h : M k + 1 A G w = h M k G w + 1 : M k + 1 A G w = G w + 1 M k
121 120 rexbidv h = G w + 1 k Z h : M k + 1 A G w = h M k k Z G w + 1 : M k + 1 A G w = G w + 1 M k
122 116 121 elab G w + 1 h | k Z h : M k + 1 A G w = h M k k Z G w + 1 : M k + 1 A G w = G w + 1 M k
123 115 122 sylib φ w Z k Z G w + 1 : M k + 1 A G w = G w + 1 M k
124 nfv k G w = m M w G m m G w + 1 = m M w + 1 G m m
125 simprl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 : M k + 1 A
126 fzssp1 M k M k + 1
127 fssres G w + 1 : M k + 1 A M k M k + 1 G w + 1 M k : M k A
128 125 126 127 sylancl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k : M k A
129 128 fdmd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m dom G w + 1 M k = M k
130 eqid m M w G m m = m M w G m m
131 68 130 fnmpti m M w G m m Fn M w
132 simprr φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k = m M w G m m
133 132 fneq1d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k Fn M w m M w G m m Fn M w
134 131 133 mpbiri φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k Fn M w
135 134 fndmd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m dom G w + 1 M k = M w
136 129 135 eqtr3d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m M k = M w
137 simplr φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m k Z
138 137 1 eleqtrdi φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m k M
139 fzopth k M M k = M w M = M k = w
140 138 139 syl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m M k = M w M = M k = w
141 136 140 mpbid φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m M = M k = w
142 141 simprd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m k = w
143 142 oveq1d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m k + 1 = w + 1
144 143 oveq2d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m M k + 1 = M w + 1
145 elfzp1 k M x M k + 1 x M k x = k + 1
146 138 145 syl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x M k + 1 x M k x = k + 1
147 136 reseq2d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m m M w + 1 G m m M k = m M w + 1 G m m M w
148 fzssp1 M w M w + 1
149 resmpt M w M w + 1 m M w + 1 G m m M w = m M w G m m
150 148 149 ax-mp m M w + 1 G m m M w = m M w G m m
151 147 150 eqtr2di φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m m M w G m m = m M w + 1 G m m M k
152 132 151 eqtrd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k = m M w + 1 G m m M k
153 152 fveq1d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 M k x = m M w + 1 G m m M k x
154 fvres x M k G w + 1 M k x = G w + 1 x
155 fvres x M k m M w + 1 G m m M k x = m M w + 1 G m m x
156 154 155 eqeq12d x M k G w + 1 M k x = m M w + 1 G m m M k x G w + 1 x = m M w + 1 G m m x
157 153 156 syl5ibcom φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x M k G w + 1 x = m M w + 1 G m m x
158 143 eqeq2d φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x = k + 1 x = w + 1
159 142 138 eqeltrrd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m w M
160 peano2uz w M w + 1 M
161 eluzfz2 w + 1 M w + 1 M w + 1
162 fveq2 m = w + 1 G m = G w + 1
163 id m = w + 1 m = w + 1
164 162 163 fveq12d m = w + 1 G m m = G w + 1 w + 1
165 eqid m M w + 1 G m m = m M w + 1 G m m
166 fvex G w + 1 w + 1 V
167 164 165 166 fvmpt w + 1 M w + 1 m M w + 1 G m m w + 1 = G w + 1 w + 1
168 159 160 161 167 4syl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m m M w + 1 G m m w + 1 = G w + 1 w + 1
169 168 eqcomd φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 w + 1 = m M w + 1 G m m w + 1
170 fveq2 x = w + 1 G w + 1 x = G w + 1 w + 1
171 fveq2 x = w + 1 m M w + 1 G m m x = m M w + 1 G m m w + 1
172 170 171 eqeq12d x = w + 1 G w + 1 x = m M w + 1 G m m x G w + 1 w + 1 = m M w + 1 G m m w + 1
173 169 172 syl5ibrcom φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x = w + 1 G w + 1 x = m M w + 1 G m m x
174 158 173 sylbid φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x = k + 1 G w + 1 x = m M w + 1 G m m x
175 157 174 jaod φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x M k x = k + 1 G w + 1 x = m M w + 1 G m m x
176 146 175 sylbid φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x M k + 1 G w + 1 x = m M w + 1 G m m x
177 176 ralrimiv φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m x M k + 1 G w + 1 x = m M w + 1 G m m x
178 ffn G w + 1 : M k + 1 A G w + 1 Fn M k + 1
179 178 ad2antrl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 Fn M k + 1
180 68 165 fnmpti m M w + 1 G m m Fn M w + 1
181 eqfnfv2 G w + 1 Fn M k + 1 m M w + 1 G m m Fn M w + 1 G w + 1 = m M w + 1 G m m M k + 1 = M w + 1 x M k + 1 G w + 1 x = m M w + 1 G m m x
182 179 180 181 sylancl φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 = m M w + 1 G m m M k + 1 = M w + 1 x M k + 1 G w + 1 x = m M w + 1 G m m x
183 144 177 182 mpbir2and φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 = m M w + 1 G m m
184 183 expr φ w Z k Z G w + 1 : M k + 1 A G w + 1 M k = m M w G m m G w + 1 = m M w + 1 G m m
185 eqeq1 G w = G w + 1 M k G w = m M w G m m G w + 1 M k = m M w G m m
186 185 imbi1d G w = G w + 1 M k G w = m M w G m m G w + 1 = m M w + 1 G m m G w + 1 M k = m M w G m m G w + 1 = m M w + 1 G m m
187 184 186 syl5ibrcom φ w Z k Z G w + 1 : M k + 1 A G w = G w + 1 M k G w = m M w G m m G w + 1 = m M w + 1 G m m
188 187 expimpd φ w Z k Z G w + 1 : M k + 1 A G w = G w + 1 M k G w = m M w G m m G w + 1 = m M w + 1 G m m
189 188 ex φ w Z k Z G w + 1 : M k + 1 A G w = G w + 1 M k G w = m M w G m m G w + 1 = m M w + 1 G m m
190 82 124 189 rexlimd φ w Z k Z G w + 1 : M k + 1 A G w = G w + 1 M k G w = m M w G m m G w + 1 = m M w + 1 G m m
191 123 190 mpd φ w Z G w = m M w G m m G w + 1 = m M w + 1 G m m
192 191 expcom w Z φ G w = m M w G m m G w + 1 = m M w + 1 G m m
193 74 192 sylbir w M φ G w = m M w G m m G w + 1 = m M w + 1 G m m
194 193 a2d w M φ G w = m M w G m m φ G w + 1 = m M w + 1 G m m
195 37 42 47 52 73 194 uzind4 k M φ G k = m M k G m m
196 195 1 eleq2s k Z φ G k = m M k G m m
197 196 impcom φ k Z G k = m M k G m m
198 197 dmeqd φ k Z dom G k = dom m M k G m m
199 dmmptg m M k G m m V dom m M k G m m = M k
200 68 a1i m M k G m m V
201 199 200 mprg dom m M k G m m = M k
202 198 201 eqtrdi φ k Z dom G k = M k
203 202 eqeq1d φ k Z dom G k = M n M k = M n
204 simpr φ k Z k Z
205 204 1 eleqtrdi φ k Z k M
206 fzopth k M M k = M n M = M k = n
207 205 206 syl φ k Z M k = M n M = M k = n
208 203 207 bitrd φ k Z dom G k = M n M = M k = n
209 simpr M = M k = n k = n
210 208 209 syl6bi φ k Z dom G k = M n k = n
211 32 210 syl5 φ k Z G k : M n A [˙ G k / g]˙ ψ k = n
212 oveq2 n = k M n = M k
213 212 feq2d n = k G k : M n A G k : M k A
214 4 sbcbidv n = k [˙ G k / g]˙ ψ [˙ G k / g]˙ θ
215 213 214 anbi12d n = k G k : M n A [˙ G k / g]˙ ψ G k : M k A [˙ G k / g]˙ θ
216 215 equcoms k = n G k : M n A [˙ G k / g]˙ ψ G k : M k A [˙ G k / g]˙ θ
217 216 biimpcd G k : M n A [˙ G k / g]˙ ψ k = n G k : M k A [˙ G k / g]˙ θ
218 211 217 sylcom φ k Z G k : M n A [˙ G k / g]˙ ψ G k : M k A [˙ G k / g]˙ θ
219 218 rexlimdvw φ k Z n Z G k : M n A [˙ G k / g]˙ ψ G k : M k A [˙ G k / g]˙ θ
220 30 219 mpd φ k Z G k : M k A [˙ G k / g]˙ θ
221 220 simpld φ k Z G k : M k A
222 eluzfz2 k M k M k
223 205 222 syl φ k Z k M k
224 221 223 ffvelrnd φ k Z G k k A
225 55 cbvmptv m Z G m m = k Z G k k
226 12 224 225 fmptdf φ m Z G m m : Z A
227 220 simprd φ k Z [˙ G k / g]˙ θ
228 197 227 sbceq1dd φ k Z [˙ m M k G m m / g]˙ θ
229 228 ex φ k Z [˙ m M k G m m / g]˙ θ
230 12 229 ralrimi φ k Z [˙ m M k G m m / g]˙ θ
231 mpteq1 M n = M k m M n G m m = m M k G m m
232 dfsbcq m M n G m m = m M k G m m [˙ m M n G m m / g]˙ ψ [˙ m M k G m m / g]˙ ψ
233 212 231 232 3syl n = k [˙ m M n G m m / g]˙ ψ [˙ m M k G m m / g]˙ ψ
234 4 sbcbidv n = k [˙ m M k G m m / g]˙ ψ [˙ m M k G m m / g]˙ θ
235 233 234 bitrd n = k [˙ m M n G m m / g]˙ ψ [˙ m M k G m m / g]˙ θ
236 235 cbvralvw n Z [˙ m M n G m m / g]˙ ψ k Z [˙ m M k G m m / g]˙ θ
237 230 236 sylibr φ n Z [˙ m M n G m m / g]˙ ψ
238 80 mptex m Z G m m V
239 feq1 f = m Z G m m f : Z A m Z G m m : Z A
240 vex f V
241 240 resex f M n V
242 241 2 sbcie [˙ f M n / g]˙ ψ χ
243 reseq1 f = m Z G m m f M n = m Z G m m M n
244 fzssuz M n M
245 244 1 sseqtrri M n Z
246 resmpt M n Z m Z G m m M n = m M n G m m
247 245 246 ax-mp m Z G m m M n = m M n G m m
248 243 247 eqtrdi f = m Z G m m f M n = m M n G m m
249 248 sbceq1d f = m Z G m m [˙ f M n / g]˙ ψ [˙ m M n G m m / g]˙ ψ
250 242 249 bitr3id f = m Z G m m χ [˙ m M n G m m / g]˙ ψ
251 250 ralbidv f = m Z G m m n Z χ n Z [˙ m M n G m m / g]˙ ψ
252 239 251 anbi12d f = m Z G m m f : Z A n Z χ m Z G m m : Z A n Z [˙ m M n G m m / g]˙ ψ
253 238 252 spcev m Z G m m : Z A n Z [˙ m M n G m m / g]˙ ψ f f : Z A n Z χ
254 226 237 253 syl2anc φ f f : Z A n Z χ