| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdc.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | sdc.2 | ⊢ ( 𝑔  =  ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | sdc.3 | ⊢ ( 𝑛  =  𝑀  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 4 |  | sdc.4 | ⊢ ( 𝑛  =  𝑘  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 5 |  | sdc.5 | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑛  =  ( 𝑘  +  1 ) )  →  ( 𝜓  ↔  𝜎 ) ) | 
						
							| 6 |  | sdc.6 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | sdc.7 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 8 |  | sdc.8 | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴  ∧  𝜏 ) ) | 
						
							| 9 |  | sdc.9 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  𝜃 )  →  ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑔  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) ) ) | 
						
							| 10 |  | sdc.10 | ⊢ 𝐽  =  { 𝑔  ∣  ∃ 𝑛  ∈  𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  𝜓 ) } | 
						
							| 11 |  | sdc.11 | ⊢ 𝐹  =  ( 𝑤  ∈  𝑍 ,  𝑥  ∈  𝐽  ↦  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) | 
						
							| 12 |  | sdc.12 | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 13 |  | sdc.13 | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ 𝐽 ) | 
						
							| 14 |  | sdc.14 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 15 |  | sdc.15 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  ∈  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 16 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝐽 ) | 
						
							| 17 | 10 | eleq2i | ⊢ ( ( 𝐺 ‘ 𝑘 )  ∈  𝐽  ↔  ( 𝐺 ‘ 𝑘 )  ∈  { 𝑔  ∣  ∃ 𝑛  ∈  𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  𝜓 ) } ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑔 𝑍 | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑔 ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 | 
						
							| 20 |  | nfsbc1v | ⊢ Ⅎ 𝑔 [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 | 
						
							| 21 | 19 20 | nfan | ⊢ Ⅎ 𝑔 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) | 
						
							| 22 | 18 21 | nfrexw | ⊢ Ⅎ 𝑔 ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) | 
						
							| 23 |  | fvex | ⊢ ( 𝐺 ‘ 𝑘 )  ∈  V | 
						
							| 24 |  | feq1 | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ↔  ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) | 
						
							| 25 |  | sbceq1a | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝜓  ↔  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) | 
						
							| 26 | 24 25 | anbi12d | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝑘 )  →  ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  𝜓 )  ↔  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) ) | 
						
							| 27 | 26 | rexbidv | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝑘 )  →  ( ∃ 𝑛  ∈  𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  𝜓 )  ↔  ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) ) | 
						
							| 28 | 22 23 27 | elabf | ⊢ ( ( 𝐺 ‘ 𝑘 )  ∈  { 𝑔  ∣  ∃ 𝑛  ∈  𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  𝜓 ) }  ↔  ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) | 
						
							| 29 | 17 28 | bitri | ⊢ ( ( 𝐺 ‘ 𝑘 )  ∈  𝐽  ↔  ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) | 
						
							| 30 | 16 29 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 ) ) | 
						
							| 31 |  | fdm | ⊢ ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  →  dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑛 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  →  dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑛 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑥  =  𝑀  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑀 ... 𝑥 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 35 | 34 | mpteq1d | ⊢ ( 𝑥  =  𝑀  →  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 36 | 33 35 | eqeq12d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 37 | 36 | imbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝜑  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  ↔  ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑀 ... 𝑥 )  =  ( 𝑀 ... 𝑤 ) ) | 
						
							| 40 | 39 | mpteq1d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 41 | 38 40 | eqeq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 42 | 41 | imbi2d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝜑  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  ↔  ( 𝜑  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( 𝑀 ... 𝑥 )  =  ( 𝑀 ... ( 𝑤  +  1 ) ) ) | 
						
							| 45 | 44 | mpteq1d | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 46 | 43 45 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 47 | 46 | imbi2d | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( 𝜑  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  ↔  ( 𝜑  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 49 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑀 ... 𝑥 )  =  ( 𝑀 ... 𝑘 ) ) | 
						
							| 50 | 49 | mpteq1d | ⊢ ( 𝑥  =  𝑘  →  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 51 | 48 50 | eqeq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( 𝐺 ‘ 𝑘 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 52 | 51 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑥 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  ↔  ( 𝜑  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 54 |  | id | ⊢ ( 𝑚  =  𝑘  →  𝑚  =  𝑘 ) | 
						
							| 55 | 53 54 | fveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 )  =  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) | 
						
							| 56 |  | eqid | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) | 
						
							| 57 |  | fvex | ⊢ ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 )  ∈  V | 
						
							| 58 | 55 56 57 | fvmpt | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑀 )  →  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 )  =  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 )  =  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) | 
						
							| 60 |  | elfz1eq | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑀 )  →  𝑘  =  𝑀 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  𝑘  =  𝑀 ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 63 | 62 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 )  =  ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) | 
						
							| 64 | 59 63 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑀 ... 𝑀 )  →  ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) | 
						
							| 66 | 12 65 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) | 
						
							| 67 | 14 | ffnd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  Fn  ( 𝑀 ... 𝑀 ) ) | 
						
							| 68 |  | fvex | ⊢ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 )  ∈  V | 
						
							| 69 | 68 56 | fnmpti | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... 𝑀 ) | 
						
							| 70 |  | eqfnfv | ⊢ ( ( ( 𝐺 ‘ 𝑀 )  Fn  ( 𝑀 ... 𝑀 )  ∧  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ∀ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) | 
						
							| 71 | 67 69 70 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ∀ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 )  =  ( ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) | 
						
							| 72 | 66 71 | mpbird | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 73 | 72 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑀 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 74 | 1 | eleq2i | ⊢ ( 𝑤  ∈  𝑍  ↔  𝑤  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 75 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑤 )  ∈  𝐽 ) | 
						
							| 76 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  𝑤  ∈  𝑍 ) | 
						
							| 77 |  | 3simpa | ⊢ ( ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 )  →  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 78 | 77 | reximi | ⊢ ( ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 )  →  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 79 | 78 | ss2abi | ⊢ { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ⊆  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) } | 
						
							| 80 | 1 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑘 𝑤  ∈  𝑍 | 
						
							| 82 | 12 81 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑤  ∈  𝑍 ) | 
						
							| 83 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  𝐴  ∈  𝑉 ) | 
						
							| 84 |  | simpl | ⊢ ( ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) )  →  ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 85 |  | ovex | ⊢ ( 𝑀 ... ( 𝑘  +  1 ) )  ∈  V | 
						
							| 86 |  | elmapg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑀 ... ( 𝑘  +  1 ) )  ∈  V )  →  ( ℎ  ∈  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) )  ↔  ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 ) ) | 
						
							| 87 | 85 86 | mpan2 | ⊢ ( 𝐴  ∈  𝑉  →  ( ℎ  ∈  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) )  ↔  ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 ) ) | 
						
							| 88 | 84 87 | imbitrrid | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) )  →  ℎ  ∈  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 89 | 88 | abssdv | ⊢ ( 𝐴  ∈  𝑉  →  { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ⊆  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 90 | 83 89 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ⊆  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 91 |  | ovex | ⊢ ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) )  ∈  V | 
						
							| 92 |  | ssexg | ⊢ ( ( { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ⊆  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) )  ∧  ( 𝐴  ↑m  ( 𝑀 ... ( 𝑘  +  1 ) ) )  ∈  V )  →  { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) | 
						
							| 93 | 90 91 92 | sylancl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) | 
						
							| 94 | 93 | a1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝑘  ∈  𝑍  →  { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) ) | 
						
							| 95 | 82 94 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ∀ 𝑘  ∈  𝑍 { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) | 
						
							| 96 |  | abrexex2g | ⊢ ( ( 𝑍  ∈  V  ∧  ∀ 𝑘  ∈  𝑍 { ℎ  ∣  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V )  →  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) | 
						
							| 97 | 80 95 96 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V ) | 
						
							| 98 |  | ssexg | ⊢ ( ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ⊆  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∧  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ∈  V )  →  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V ) | 
						
							| 99 | 79 97 98 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V ) | 
						
							| 100 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ↔  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 101 | 100 | 3anbi2d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 )  ↔  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) ) ) | 
						
							| 102 | 101 | rexbidv | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 )  ↔  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) ) ) | 
						
							| 103 | 102 | abbidv | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) | 
						
							| 104 | 103 | eleq1d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  ↔  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V ) ) | 
						
							| 105 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑤 𝐹 𝑥 )  =  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 106 | 105 103 | eqeq12d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ↔  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) ) | 
						
							| 107 | 104 106 | imbi12d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } )  ↔  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) ) ) | 
						
							| 108 | 107 | imbi2d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝑤  ∈  𝑍  →  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) )  ↔  ( 𝑤  ∈  𝑍  →  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) ) ) ) | 
						
							| 109 | 11 | ovmpt4g | ⊢ ( ( 𝑤  ∈  𝑍  ∧  𝑥  ∈  𝐽  ∧  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V )  →  ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) | 
						
							| 110 | 109 | 3com12 | ⊢ ( ( 𝑥  ∈  𝐽  ∧  𝑤  ∈  𝑍  ∧  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V )  →  ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) | 
						
							| 111 | 110 | 3exp | ⊢ ( 𝑥  ∈  𝐽  →  ( 𝑤  ∈  𝑍  →  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 𝑥 )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  𝑥  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) ) ) | 
						
							| 112 | 108 111 | vtoclga | ⊢ ( ( 𝐺 ‘ 𝑤 )  ∈  𝐽  →  ( 𝑤  ∈  𝑍  →  ( { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) }  ∈  V  →  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) ) ) | 
						
							| 113 | 75 76 99 112 | syl3c | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  =  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ∧  𝜎 ) } ) | 
						
							| 114 | 113 79 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) )  ⊆  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) } ) | 
						
							| 115 | 114 15 | sseldd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  ∈  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) } ) | 
						
							| 116 |  | fvex | ⊢ ( 𝐺 ‘ ( 𝑤  +  1 ) )  ∈  V | 
						
							| 117 |  | feq1 | ⊢ ( ℎ  =  ( 𝐺 ‘ ( 𝑤  +  1 ) )  →  ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ↔  ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 ) ) | 
						
							| 118 |  | reseq1 | ⊢ ( ℎ  =  ( 𝐺 ‘ ( 𝑤  +  1 ) )  →  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) | 
						
							| 119 | 118 | eqeq2d | ⊢ ( ℎ  =  ( 𝐺 ‘ ( 𝑤  +  1 ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) )  ↔  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 120 | 117 119 | anbi12d | ⊢ ( ℎ  =  ( 𝐺 ‘ ( 𝑤  +  1 ) )  →  ( ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) )  ↔  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) ) ) | 
						
							| 121 | 120 | rexbidv | ⊢ ( ℎ  =  ( 𝐺 ‘ ( 𝑤  +  1 ) )  →  ( ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) )  ↔  ∃ 𝑘  ∈  𝑍 ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) ) ) | 
						
							| 122 | 116 121 | elab | ⊢ ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ∈  { ℎ  ∣  ∃ 𝑘  ∈  𝑍 ( ℎ : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ℎ  ↾  ( 𝑀 ... 𝑘 ) ) ) }  ↔  ∃ 𝑘  ∈  𝑍 ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 123 | 115 122 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ∃ 𝑘  ∈  𝑍 ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) ) | 
						
							| 124 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 125 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 126 |  | fzssp1 | ⊢ ( 𝑀 ... 𝑘 )  ⊆  ( 𝑀 ... ( 𝑘  +  1 ) ) | 
						
							| 127 |  | fssres | ⊢ ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝑀 ... 𝑘 )  ⊆  ( 𝑀 ... ( 𝑘  +  1 ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) | 
						
							| 128 | 125 126 127 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) | 
						
							| 129 | 128 | fdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  dom  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑀 ... 𝑘 ) ) | 
						
							| 130 |  | eqid | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) | 
						
							| 131 | 68 130 | fnmpti | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... 𝑤 ) | 
						
							| 132 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 133 | 132 | fneq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  Fn  ( 𝑀 ... 𝑤 )  ↔  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... 𝑤 ) ) ) | 
						
							| 134 | 131 133 | mpbiri | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  Fn  ( 𝑀 ... 𝑤 ) ) | 
						
							| 135 | 134 | fndmd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  dom  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑀 ... 𝑤 ) ) | 
						
							| 136 | 129 135 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑤 ) ) | 
						
							| 137 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 138 | 137 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 139 |  | fzopth | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑤 )  ↔  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑤 ) ) ) | 
						
							| 140 | 138 139 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑤 )  ↔  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑤 ) ) ) | 
						
							| 141 | 136 140 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑤 ) ) | 
						
							| 142 | 141 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  𝑘  =  𝑤 ) | 
						
							| 143 | 142 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑘  +  1 )  =  ( 𝑤  +  1 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑀 ... ( 𝑘  +  1 ) )  =  ( 𝑀 ... ( 𝑤  +  1 ) ) ) | 
						
							| 145 |  | elfzp1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) )  ↔  ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  ∨  𝑥  =  ( 𝑘  +  1 ) ) ) ) | 
						
							| 146 | 138 145 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) )  ↔  ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  ∨  𝑥  =  ( 𝑘  +  1 ) ) ) ) | 
						
							| 147 | 136 | reseq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑤 ) ) ) | 
						
							| 148 |  | fzssp1 | ⊢ ( 𝑀 ... 𝑤 )  ⊆  ( 𝑀 ... ( 𝑤  +  1 ) ) | 
						
							| 149 |  | resmpt | ⊢ ( ( 𝑀 ... 𝑤 )  ⊆  ( 𝑀 ... ( 𝑤  +  1 ) )  →  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑤 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 150 | 148 149 | ax-mp | ⊢ ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑤 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) | 
						
							| 151 | 147 150 | eqtr2di | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) | 
						
							| 152 | 132 151 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ) | 
						
							| 153 | 152 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 )  =  ( ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 154 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 155 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  →  ( ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) | 
						
							| 156 | 154 155 | eqeq12d | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  →  ( ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 )  =  ( ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 )  ↔  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 157 | 153 156 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 158 | 143 | eqeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  =  ( 𝑘  +  1 )  ↔  𝑥  =  ( 𝑤  +  1 ) ) ) | 
						
							| 159 | 142 138 | eqeltrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  𝑤  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 160 |  | peano2uz | ⊢ ( 𝑤  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑤  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 161 |  | eluzfz2 | ⊢ ( ( 𝑤  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑤  +  1 )  ∈  ( 𝑀 ... ( 𝑤  +  1 ) ) ) | 
						
							| 162 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑤  +  1 )  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 163 |  | id | ⊢ ( 𝑚  =  ( 𝑤  +  1 )  →  𝑚  =  ( 𝑤  +  1 ) ) | 
						
							| 164 | 162 163 | fveq12d | ⊢ ( 𝑚  =  ( 𝑤  +  1 )  →  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 165 |  | eqid | ⊢ ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) | 
						
							| 166 |  | fvex | ⊢ ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) )  ∈  V | 
						
							| 167 | 164 165 166 | fvmpt | ⊢ ( ( 𝑤  +  1 )  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  →  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤  +  1 ) )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 168 | 159 160 161 167 | 4syl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤  +  1 ) )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 169 | 168 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 170 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 171 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤  +  1 ) ) ) | 
						
							| 172 | 170 171 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 )  ↔  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ ( 𝑤  +  1 ) )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤  +  1 ) ) ) ) | 
						
							| 173 | 169 172 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  =  ( 𝑤  +  1 )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 174 | 158 173 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 175 | 157 174 | jaod | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝑥  ∈  ( 𝑀 ... 𝑘 )  ∨  𝑥  =  ( 𝑘  +  1 ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 176 | 146 175 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) | 
						
							| 177 | 176 | ralrimiv | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ∀ 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) ) ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) | 
						
							| 178 |  | ffn | ⊢ ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  Fn  ( 𝑀 ... ( 𝑘  +  1 ) ) ) | 
						
							| 179 | 178 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  Fn  ( 𝑀 ... ( 𝑘  +  1 ) ) ) | 
						
							| 180 | 68 165 | fnmpti | ⊢ ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... ( 𝑤  +  1 ) ) | 
						
							| 181 |  | eqfnfv2 | ⊢ ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  Fn  ( 𝑀 ... ( 𝑘  +  1 ) )  ∧  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  Fn  ( 𝑀 ... ( 𝑤  +  1 ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( ( 𝑀 ... ( 𝑘  +  1 ) )  =  ( 𝑀 ... ( 𝑤  +  1 ) )  ∧  ∀ 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) ) ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 182 | 179 180 181 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( ( 𝑀 ... ( 𝑘  +  1 ) )  =  ( 𝑀 ... ( 𝑤  +  1 ) )  ∧  ∀ 𝑥  ∈  ( 𝑀 ... ( 𝑘  +  1 ) ) ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 183 | 144 177 182 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 184 | 183 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 185 |  | eqeq1 | ⊢ ( ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↔  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 186 | 185 | imbi1d | ⊢ ( ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  →  ( ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  ↔  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 187 | 184 186 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴 )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 188 | 187 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 189 | 188 | ex | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( 𝑘  ∈  𝑍  →  ( ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) ) | 
						
							| 190 | 82 124 189 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( ∃ 𝑘  ∈  𝑍 ( ( 𝐺 ‘ ( 𝑤  +  1 ) ) : ( 𝑀 ... ( 𝑘  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑤 )  =  ( ( 𝐺 ‘ ( 𝑤  +  1 ) )  ↾  ( 𝑀 ... 𝑘 ) ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 191 | 123 190 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 192 | 191 | expcom | ⊢ ( 𝑤  ∈  𝑍  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 193 | 74 192 | sylbir | ⊢ ( 𝑤  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 194 | 193 | a2d | ⊢ ( 𝑤  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝜑  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑤 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) )  →  ( 𝜑  →  ( 𝐺 ‘ ( 𝑤  +  1 ) )  =  ( 𝑚  ∈  ( 𝑀 ... ( 𝑤  +  1 ) )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 195 | 37 42 47 52 73 194 | uzind4 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 196 | 195 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝜑  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) | 
						
							| 197 | 196 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 198 | 197 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  dom  ( 𝐺 ‘ 𝑘 )  =  dom  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 199 |  | dmmptg | ⊢ ( ∀ 𝑚  ∈  ( 𝑀 ... 𝑘 ) ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 )  ∈  V  →  dom  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑀 ... 𝑘 ) ) | 
						
							| 200 | 68 | a1i | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  →  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 )  ∈  V ) | 
						
							| 201 | 199 200 | mprg | ⊢ dom  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑀 ... 𝑘 ) | 
						
							| 202 | 198 201 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑘 ) ) | 
						
							| 203 | 202 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑛 )  ↔  ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑛 ) ) ) | 
						
							| 204 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 ) | 
						
							| 205 | 204 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 206 |  | fzopth | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑛 )  ↔  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑛 ) ) ) | 
						
							| 207 | 205 206 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑛 )  ↔  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑛 ) ) ) | 
						
							| 208 | 203 207 | bitrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑛 )  ↔  ( 𝑀  =  𝑀  ∧  𝑘  =  𝑛 ) ) ) | 
						
							| 209 |  | simpr | ⊢ ( ( 𝑀  =  𝑀  ∧  𝑘  =  𝑛 )  →  𝑘  =  𝑛 ) | 
						
							| 210 | 208 209 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( dom  ( 𝐺 ‘ 𝑘 )  =  ( 𝑀 ... 𝑛 )  →  𝑘  =  𝑛 ) ) | 
						
							| 211 | 32 210 | syl5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  →  𝑘  =  𝑛 ) ) | 
						
							| 212 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑘 ) ) | 
						
							| 213 | 212 | feq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ↔  ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) ) | 
						
							| 214 | 4 | sbcbidv | ⊢ ( 𝑛  =  𝑘  →  ( [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓  ↔  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) | 
						
							| 215 | 213 214 | anbi12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  ↔  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) ) | 
						
							| 216 | 215 | equcoms | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  ↔  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) ) | 
						
							| 217 | 216 | biimpcd | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  →  ( 𝑘  =  𝑛  →  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) ) | 
						
							| 218 | 211 217 | sylcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  →  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) ) | 
						
							| 219 | 218 | rexlimdvw | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ∃ 𝑛  ∈  𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜓 )  →  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) ) | 
						
							| 220 | 30 219 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴  ∧  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) ) | 
						
							| 221 | 220 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) | 
						
							| 222 |  | eluzfz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 223 | 205 222 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 224 | 221 223 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 )  ∈  𝐴 ) | 
						
							| 225 | 55 | cbvmptv | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) | 
						
							| 226 | 12 224 225 | fmptdf | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ) | 
						
							| 227 | 220 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  [ ( 𝐺 ‘ 𝑘 )  /  𝑔 ] 𝜃 ) | 
						
							| 228 | 197 227 | sbceq1dd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) | 
						
							| 229 | 228 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  →  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) ) | 
						
							| 230 | 12 229 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) | 
						
							| 231 |  | mpteq1 | ⊢ ( ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑘 )  →  ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 232 |  | dfsbcq | ⊢ ( ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) | 
						
							| 233 | 212 231 232 | 3syl | ⊢ ( 𝑛  =  𝑘  →  ( [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) | 
						
							| 234 | 4 | sbcbidv | ⊢ ( 𝑛  =  𝑘  →  ( [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) ) | 
						
							| 235 | 233 234 | bitrd | ⊢ ( 𝑛  =  𝑘  →  ( [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) ) | 
						
							| 236 | 235 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓  ↔  ∀ 𝑘  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑘 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜃 ) | 
						
							| 237 | 230 236 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) | 
						
							| 238 | 80 | mptex | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ∈  V | 
						
							| 239 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝑓 : 𝑍 ⟶ 𝐴  ↔  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ) ) | 
						
							| 240 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 241 | 240 | resex | ⊢ ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  ∈  V | 
						
							| 242 | 241 2 | sbcie | ⊢ ( [ ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  /  𝑔 ] 𝜓  ↔  𝜒 ) | 
						
							| 243 |  | reseq1 | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  =  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑛 ) ) ) | 
						
							| 244 |  | fzssuz | ⊢ ( 𝑀 ... 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 245 | 244 1 | sseqtrri | ⊢ ( 𝑀 ... 𝑛 )  ⊆  𝑍 | 
						
							| 246 |  | resmpt | ⊢ ( ( 𝑀 ... 𝑛 )  ⊆  𝑍  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑛 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 247 | 245 246 | ax-mp | ⊢ ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  ↾  ( 𝑀 ... 𝑛 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) | 
						
							| 248 | 243 247 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  =  ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) | 
						
							| 249 | 248 | sbceq1d | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( [ ( 𝑓  ↾  ( 𝑀 ... 𝑛 ) )  /  𝑔 ] 𝜓  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) | 
						
							| 250 | 242 249 | bitr3id | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( 𝜒  ↔  [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) | 
						
							| 251 | 250 | ralbidv | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( ∀ 𝑛  ∈  𝑍 𝜒  ↔  ∀ 𝑛  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) | 
						
							| 252 | 239 251 | anbi12d | ⊢ ( 𝑓  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  →  ( ( 𝑓 : 𝑍 ⟶ 𝐴  ∧  ∀ 𝑛  ∈  𝑍 𝜒 )  ↔  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴  ∧  ∀ 𝑛  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 ) ) ) | 
						
							| 253 | 238 252 | spcev | ⊢ ( ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴  ∧  ∀ 𝑛  ∈  𝑍 [ ( 𝑚  ∈  ( 𝑀 ... 𝑛 )  ↦  ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) )  /  𝑔 ] 𝜓 )  →  ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴  ∧  ∀ 𝑛  ∈  𝑍 𝜒 ) ) | 
						
							| 254 | 226 237 253 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴  ∧  ∀ 𝑛  ∈  𝑍 𝜒 ) ) |