Step |
Hyp |
Ref |
Expression |
1 |
|
sdc.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
sdc.2 |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
sdc.3 |
⊢ ( 𝑛 = 𝑀 → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
sdc.4 |
⊢ ( 𝑛 = 𝑘 → ( 𝜓 ↔ 𝜃 ) ) |
5 |
|
sdc.5 |
⊢ ( ( 𝑔 = ℎ ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓 ↔ 𝜎 ) ) |
6 |
|
sdc.6 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
sdc.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
sdc.8 |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) |
9 |
|
sdc.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
10 |
|
sdc.10 |
⊢ 𝐽 = { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } |
11 |
|
sdc.11 |
⊢ 𝐹 = ( 𝑤 ∈ 𝑍 , 𝑥 ∈ 𝐽 ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
12 |
|
sdc.12 |
⊢ Ⅎ 𝑘 𝜑 |
13 |
|
sdc.13 |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝐽 ) |
14 |
|
sdc.14 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) |
15 |
|
sdc.15 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) ) |
16 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐽 ) |
17 |
10
|
eleq2i |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐽 ↔ ( 𝐺 ‘ 𝑘 ) ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑍 |
19 |
|
nfv |
⊢ Ⅎ 𝑔 ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 |
20 |
|
nfsbc1v |
⊢ Ⅎ 𝑔 [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 |
21 |
19 20
|
nfan |
⊢ Ⅎ 𝑔 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) |
22 |
18 21
|
nfrex |
⊢ Ⅎ 𝑔 ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) |
23 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑘 ) ∈ V |
24 |
|
feq1 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑘 ) → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) |
25 |
|
sbceq1a |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑘 ) → ( 𝜓 ↔ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑘 ) → ( ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) ) |
28 |
22 23 27
|
elabf |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↔ ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) |
29 |
17 28
|
bitri |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐽 ↔ ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) |
30 |
16 29
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ) |
31 |
|
fdm |
⊢ ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 → dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑛 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) → dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑛 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑀 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) |
35 |
34
|
mpteq1d |
⊢ ( 𝑥 = 𝑀 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
36 |
33 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
37 |
36
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑤 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑤 ) ) |
40 |
39
|
mpteq1d |
⊢ ( 𝑥 = 𝑤 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
41 |
38 40
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 → ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
43 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑤 + 1 ) ) ) |
44 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ) |
45 |
44
|
mpteq1d |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
46 |
43 45
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
47 |
46
|
imbi2d |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝜑 → ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) |
49 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ) |
50 |
49
|
mpteq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
51 |
48 50
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
52 |
51
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( 𝐺 ‘ 𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) |
54 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
55 |
53 54
|
fveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) |
56 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) |
57 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ∈ V |
58 |
55 56 57
|
fvmpt |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) |
60 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 = 𝑀 ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → 𝑘 = 𝑀 ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) |
63 |
62
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) ) |
64 |
59 63
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) |
65 |
64
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) |
66 |
12 65
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) |
67 |
14
|
ffnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) Fn ( 𝑀 ... 𝑀 ) ) |
68 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ∈ V |
69 |
68 56
|
fnmpti |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑀 ) |
70 |
|
eqfnfv |
⊢ ( ( ( 𝐺 ‘ 𝑀 ) Fn ( 𝑀 ... 𝑀 ) ∧ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) |
71 |
67 69 70
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) ) |
72 |
66 71
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
73 |
72
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
74 |
1
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑍 ↔ 𝑤 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
75 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝐽 ) |
76 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ 𝑍 ) |
77 |
|
3simpa |
⊢ ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) → ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
78 |
77
|
reximi |
⊢ ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) → ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
79 |
78
|
ss2abi |
⊢ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } |
80 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
81 |
|
nfv |
⊢ Ⅎ 𝑘 𝑤 ∈ 𝑍 |
82 |
12 81
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) |
83 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝐴 ∈ 𝑉 ) |
84 |
|
simpl |
⊢ ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) → ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) |
85 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑘 + 1 ) ) ∈ V |
86 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑀 ... ( 𝑘 + 1 ) ) ∈ V ) → ( ℎ ∈ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ↔ ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) ) |
87 |
85 86
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ℎ ∈ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ↔ ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) ) |
88 |
84 87
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) → ℎ ∈ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) ) |
89 |
88
|
abssdv |
⊢ ( 𝐴 ∈ 𝑉 → { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) |
90 |
83 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) |
91 |
|
ovex |
⊢ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∈ V |
92 |
|
ssexg |
⊢ ( ( { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∧ ( 𝐴 ↑m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∈ V ) → { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) |
93 |
90 91 92
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) |
94 |
93
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑘 ∈ 𝑍 → { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) ) |
95 |
82 94
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ∀ 𝑘 ∈ 𝑍 { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) |
96 |
|
abrexex2g |
⊢ ( ( 𝑍 ∈ V ∧ ∀ 𝑘 ∈ 𝑍 { ℎ ∣ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) |
97 |
80 95 96
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) |
98 |
|
ssexg |
⊢ ( ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∧ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) |
99 |
79 97 98
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) |
100 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
101 |
100
|
3anbi2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
102 |
101
|
rexbidv |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
103 |
102
|
abbidv |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
104 |
103
|
eleq1d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ↔ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) ) |
105 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( 𝑤 𝐹 𝑥 ) = ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) ) |
106 |
105 103
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ↔ ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) |
107 |
104 106
|
imbi12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ↔ ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ) |
108 |
107
|
imbi2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑤 ∈ 𝑍 → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ↔ ( 𝑤 ∈ 𝑍 → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ) ) |
109 |
11
|
ovmpt4g |
⊢ ( ( 𝑤 ∈ 𝑍 ∧ 𝑥 ∈ 𝐽 ∧ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) → ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
110 |
109
|
3com12 |
⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑤 ∈ 𝑍 ∧ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) → ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
111 |
110
|
3exp |
⊢ ( 𝑥 ∈ 𝐽 → ( 𝑤 ∈ 𝑍 → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ) |
112 |
108 111
|
vtoclga |
⊢ ( ( 𝐺 ‘ 𝑤 ) ∈ 𝐽 → ( 𝑤 ∈ 𝑍 → ( { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ) |
113 |
75 76 99 112
|
syl3c |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
114 |
113 79
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 𝐹 ( 𝐺 ‘ 𝑤 ) ) ⊆ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ) |
115 |
114 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ) |
116 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ V |
117 |
|
feq1 |
⊢ ( ℎ = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ↔ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) ) |
118 |
|
reseq1 |
⊢ ( ℎ = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) |
119 |
118
|
eqeq2d |
⊢ ( ℎ = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
120 |
117 119
|
anbi12d |
⊢ ( ℎ = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) ) |
121 |
120
|
rexbidv |
⊢ ( ℎ = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) ) |
122 |
116 121
|
elab |
⊢ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) } ↔ ∃ 𝑘 ∈ 𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
123 |
115 122
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ∃ 𝑘 ∈ 𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
124 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
125 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) |
126 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... ( 𝑘 + 1 ) ) |
127 |
|
fssres |
⊢ ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... ( 𝑘 + 1 ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) |
128 |
125 126 127
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) |
129 |
128
|
fdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → dom ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑀 ... 𝑘 ) ) |
130 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) |
131 |
68 130
|
fnmpti |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑤 ) |
132 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
133 |
132
|
fneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) Fn ( 𝑀 ... 𝑤 ) ↔ ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑤 ) ) ) |
134 |
131 133
|
mpbiri |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) Fn ( 𝑀 ... 𝑤 ) ) |
135 |
134
|
fndmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → dom ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑀 ... 𝑤 ) ) |
136 |
129 135
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) ) |
137 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘 ∈ 𝑍 ) |
138 |
137 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
139 |
|
fzopth |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) ↔ ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑤 ) ) ) |
140 |
138 139
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) ↔ ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑤 ) ) ) |
141 |
136 140
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑤 ) ) |
142 |
141
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘 = 𝑤 ) |
143 |
142
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑘 + 1 ) = ( 𝑤 + 1 ) ) |
144 |
143
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ) |
145 |
|
elfzp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) ) ) |
146 |
138 145
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) ) ) |
147 |
136
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) ) |
148 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑤 ) ⊆ ( 𝑀 ... ( 𝑤 + 1 ) ) |
149 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑤 ) ⊆ ( 𝑀 ... ( 𝑤 + 1 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
150 |
148 149
|
ax-mp |
⊢ ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) |
151 |
147 150
|
eqtr2di |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) |
152 |
132 151
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) |
153 |
152
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) ) |
154 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) ) |
155 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) |
156 |
154 155
|
eqeq12d |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
157 |
153 156
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
158 |
143
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑘 + 1 ) ↔ 𝑥 = ( 𝑤 + 1 ) ) ) |
159 |
142 138
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑤 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
160 |
|
peano2uz |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑤 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
161 |
|
eluzfz2 |
⊢ ( ( 𝑤 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑤 + 1 ) ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ) |
162 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑤 + 1 ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝑤 + 1 ) ) ) |
163 |
|
id |
⊢ ( 𝑚 = ( 𝑤 + 1 ) → 𝑚 = ( 𝑤 + 1 ) ) |
164 |
162 163
|
fveq12d |
⊢ ( 𝑚 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ) |
165 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) |
166 |
|
fvex |
⊢ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ∈ V |
167 |
164 165 166
|
fvmpt |
⊢ ( ( 𝑤 + 1 ) ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ) |
168 |
159 160 161 167
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ) |
169 |
168
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) ) |
170 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ) |
171 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) ) |
172 |
170 171
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑤 + 1 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) ) ) |
173 |
169 172
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
174 |
158 173
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
175 |
157 174
|
jaod |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
176 |
146 175
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) |
177 |
176
|
ralrimiv |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) |
178 |
|
ffn |
⊢ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) ) |
179 |
178
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) ) |
180 |
68 165
|
fnmpti |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... ( 𝑤 + 1 ) ) |
181 |
|
eqfnfv2 |
⊢ ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... ( 𝑤 + 1 ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ∧ ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) ) |
182 |
179 180 181
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ∧ ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) ) |
183 |
144 177 182
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
184 |
183
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
185 |
|
eqeq1 |
⊢ ( ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
186 |
185
|
imbi1d |
⊢ ( ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
187 |
184 186
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
188 |
187
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
189 |
188
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑘 ∈ 𝑍 → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) ) |
190 |
82 124 189
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ∃ 𝑘 ∈ 𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
191 |
123 190
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
192 |
191
|
expcom |
⊢ ( 𝑤 ∈ 𝑍 → ( 𝜑 → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
193 |
74 192
|
sylbir |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
194 |
193
|
a2d |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝐺 ‘ 𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) ) |
195 |
37 42 47 52 73 194
|
uzind4 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
196 |
195 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) ) |
197 |
196
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
198 |
197
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝐺 ‘ 𝑘 ) = dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
199 |
|
dmmptg |
⊢ ( ∀ 𝑚 ∈ ( 𝑀 ... 𝑘 ) ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ∈ V → dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑀 ... 𝑘 ) ) |
200 |
68
|
a1i |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) → ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ∈ V ) |
201 |
199 200
|
mprg |
⊢ dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑀 ... 𝑘 ) |
202 |
198 201
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑘 ) ) |
203 |
202
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ) ) |
204 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
205 |
204 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
206 |
|
fzopth |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑛 ) ) ) |
207 |
205 206
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑛 ) ) ) |
208 |
203 207
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑛 ) ) ) |
209 |
|
simpr |
⊢ ( ( 𝑀 = 𝑀 ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) |
210 |
208 209
|
syl6bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( dom ( 𝐺 ‘ 𝑘 ) = ( 𝑀 ... 𝑛 ) → 𝑘 = 𝑛 ) ) |
211 |
32 210
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) → 𝑘 = 𝑛 ) ) |
212 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) ) |
213 |
212
|
feq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) ) |
214 |
4
|
sbcbidv |
⊢ ( 𝑛 = 𝑘 → ( [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ↔ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) |
215 |
213 214
|
anbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ↔ ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) ) |
216 |
215
|
equcoms |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) ↔ ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) ) |
217 |
216
|
biimpcd |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) → ( 𝑘 = 𝑛 → ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) ) |
218 |
211 217
|
sylcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) → ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) ) |
219 |
218
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∃ 𝑛 ∈ 𝑍 ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜓 ) → ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) ) |
220 |
30 219
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) ) |
221 |
220
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) |
222 |
|
eluzfz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
223 |
205 222
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
224 |
221 223
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ∈ 𝐴 ) |
225 |
55
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑘 ) ) |
226 |
12 224 225
|
fmptdf |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ) |
227 |
220
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → [ ( 𝐺 ‘ 𝑘 ) / 𝑔 ] 𝜃 ) |
228 |
197 227
|
sbceq1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) |
229 |
228
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 → [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) ) |
230 |
12 229
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) |
231 |
|
mpteq1 |
⊢ ( ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) → ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
232 |
|
dfsbcq |
⊢ ( ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) |
233 |
212 231 232
|
3syl |
⊢ ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) |
234 |
4
|
sbcbidv |
⊢ ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) ) |
235 |
233 234
|
bitrd |
⊢ ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) ) |
236 |
235
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ ∀ 𝑘 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) |
237 |
230 236
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) |
238 |
80
|
mptex |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ∈ V |
239 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 : 𝑍 ⟶ 𝐴 ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ) ) |
240 |
|
vex |
⊢ 𝑓 ∈ V |
241 |
240
|
resex |
⊢ ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) ∈ V |
242 |
241 2
|
sbcie |
⊢ ( [ ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) / 𝑔 ] 𝜓 ↔ 𝜒 ) |
243 |
|
reseq1 |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) = ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) ) |
244 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
245 |
244 1
|
sseqtrri |
⊢ ( 𝑀 ... 𝑛 ) ⊆ 𝑍 |
246 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑛 ) ⊆ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
247 |
245 246
|
ax-mp |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) |
248 |
243 247
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) ) |
249 |
248
|
sbceq1d |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( [ ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) / 𝑔 ] 𝜓 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) |
250 |
242 249
|
bitr3id |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( 𝜒 ↔ [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) |
251 |
250
|
ralbidv |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( ∀ 𝑛 ∈ 𝑍 𝜒 ↔ ∀ 𝑛 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) |
252 |
239 251
|
anbi12d |
⊢ ( 𝑓 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) → ( ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ↔ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) ) |
253 |
238 252
|
spcev |
⊢ ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺 ‘ 𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |
254 |
226 237 253
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |