Metamath Proof Explorer


Theorem sdclem2

Description: Lemma for sdc . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sdc.1 𝑍 = ( ℤ𝑀 )
sdc.2 ( 𝑔 = ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) → ( 𝜓𝜒 ) )
sdc.3 ( 𝑛 = 𝑀 → ( 𝜓𝜏 ) )
sdc.4 ( 𝑛 = 𝑘 → ( 𝜓𝜃 ) )
sdc.5 ( ( 𝑔 = 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓𝜎 ) )
sdc.6 ( 𝜑𝐴𝑉 )
sdc.7 ( 𝜑𝑀 ∈ ℤ )
sdc.8 ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴𝜏 ) )
sdc.9 ( ( 𝜑𝑘𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴𝜃 ) → ∃ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑔 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) )
sdc.10 𝐽 = { 𝑔 ∣ ∃ 𝑛𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) }
sdc.11 𝐹 = ( 𝑤𝑍 , 𝑥𝐽 ↦ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
sdc.12 𝑘 𝜑
sdc.13 ( 𝜑𝐺 : 𝑍𝐽 )
sdc.14 ( 𝜑 → ( 𝐺𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 )
sdc.15 ( ( 𝜑𝑤𝑍 ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝐺𝑤 ) ) )
Assertion sdclem2 ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑍𝐴 ∧ ∀ 𝑛𝑍 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sdc.1 𝑍 = ( ℤ𝑀 )
2 sdc.2 ( 𝑔 = ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) → ( 𝜓𝜒 ) )
3 sdc.3 ( 𝑛 = 𝑀 → ( 𝜓𝜏 ) )
4 sdc.4 ( 𝑛 = 𝑘 → ( 𝜓𝜃 ) )
5 sdc.5 ( ( 𝑔 = 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓𝜎 ) )
6 sdc.6 ( 𝜑𝐴𝑉 )
7 sdc.7 ( 𝜑𝑀 ∈ ℤ )
8 sdc.8 ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴𝜏 ) )
9 sdc.9 ( ( 𝜑𝑘𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴𝜃 ) → ∃ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑔 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) )
10 sdc.10 𝐽 = { 𝑔 ∣ ∃ 𝑛𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) }
11 sdc.11 𝐹 = ( 𝑤𝑍 , 𝑥𝐽 ↦ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
12 sdc.12 𝑘 𝜑
13 sdc.13 ( 𝜑𝐺 : 𝑍𝐽 )
14 sdc.14 ( 𝜑 → ( 𝐺𝑀 ) : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 )
15 sdc.15 ( ( 𝜑𝑤𝑍 ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ ( 𝑤 𝐹 ( 𝐺𝑤 ) ) )
16 13 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ 𝐽 )
17 10 eleq2i ( ( 𝐺𝑘 ) ∈ 𝐽 ↔ ( 𝐺𝑘 ) ∈ { 𝑔 ∣ ∃ 𝑛𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) } )
18 nfcv 𝑔 𝑍
19 nfv 𝑔 ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴
20 nfsbc1v 𝑔 [ ( 𝐺𝑘 ) / 𝑔 ] 𝜓
21 19 20 nfan 𝑔 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 )
22 18 21 nfrex 𝑔𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 )
23 fvex ( 𝐺𝑘 ) ∈ V
24 feq1 ( 𝑔 = ( 𝐺𝑘 ) → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) )
25 sbceq1a ( 𝑔 = ( 𝐺𝑘 ) → ( 𝜓[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) )
26 24 25 anbi12d ( 𝑔 = ( 𝐺𝑘 ) → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) ↔ ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) ) )
27 26 rexbidv ( 𝑔 = ( 𝐺𝑘 ) → ( ∃ 𝑛𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) ↔ ∃ 𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) ) )
28 22 23 27 elabf ( ( 𝐺𝑘 ) ∈ { 𝑔 ∣ ∃ 𝑛𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴𝜓 ) } ↔ ∃ 𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) )
29 17 28 bitri ( ( 𝐺𝑘 ) ∈ 𝐽 ↔ ∃ 𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) )
30 16 29 sylib ( ( 𝜑𝑘𝑍 ) → ∃ 𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) )
31 fdm ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 → dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑛 ) )
32 31 adantr ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) → dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑛 ) )
33 fveq2 ( 𝑥 = 𝑀 → ( 𝐺𝑥 ) = ( 𝐺𝑀 ) )
34 oveq2 ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) )
35 34 mpteq1d ( 𝑥 = 𝑀 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
36 33 35 eqeq12d ( 𝑥 = 𝑀 → ( ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
37 36 imbi2d ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
38 fveq2 ( 𝑥 = 𝑤 → ( 𝐺𝑥 ) = ( 𝐺𝑤 ) )
39 oveq2 ( 𝑥 = 𝑤 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑤 ) )
40 39 mpteq1d ( 𝑥 = 𝑤 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
41 38 40 eqeq12d ( 𝑥 = 𝑤 → ( ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
42 41 imbi2d ( 𝑥 = 𝑤 → ( ( 𝜑 → ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
43 fveq2 ( 𝑥 = ( 𝑤 + 1 ) → ( 𝐺𝑥 ) = ( 𝐺 ‘ ( 𝑤 + 1 ) ) )
44 oveq2 ( 𝑥 = ( 𝑤 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑤 + 1 ) ) )
45 44 mpteq1d ( 𝑥 = ( 𝑤 + 1 ) → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
46 43 45 eqeq12d ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
47 46 imbi2d ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝜑 → ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
48 fveq2 ( 𝑥 = 𝑘 → ( 𝐺𝑥 ) = ( 𝐺𝑘 ) )
49 oveq2 ( 𝑥 = 𝑘 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) )
50 49 mpteq1d ( 𝑥 = 𝑘 → ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
51 48 50 eqeq12d ( 𝑥 = 𝑘 → ( ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( 𝐺𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
52 51 imbi2d ( 𝑥 = 𝑘 → ( ( 𝜑 → ( 𝐺𝑥 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( 𝐺𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
53 fveq2 ( 𝑚 = 𝑘 → ( 𝐺𝑚 ) = ( 𝐺𝑘 ) )
54 id ( 𝑚 = 𝑘𝑚 = 𝑘 )
55 53 54 fveq12d ( 𝑚 = 𝑘 → ( ( 𝐺𝑚 ) ‘ 𝑚 ) = ( ( 𝐺𝑘 ) ‘ 𝑘 ) )
56 eqid ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) )
57 fvex ( ( 𝐺𝑘 ) ‘ 𝑘 ) ∈ V
58 55 56 57 fvmpt ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) = ( ( 𝐺𝑘 ) ‘ 𝑘 ) )
59 58 adantl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) = ( ( 𝐺𝑘 ) ‘ 𝑘 ) )
60 elfz1eq ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 = 𝑀 )
61 60 adantl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → 𝑘 = 𝑀 )
62 61 fveq2d ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝐺𝑘 ) = ( 𝐺𝑀 ) )
63 62 fveq1d ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺𝑘 ) ‘ 𝑘 ) = ( ( 𝐺𝑀 ) ‘ 𝑘 ) )
64 59 63 eqtr2d ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) )
65 64 ex ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → ( ( 𝐺𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) )
66 12 65 ralrimi ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) )
67 14 ffnd ( 𝜑 → ( 𝐺𝑀 ) Fn ( 𝑀 ... 𝑀 ) )
68 fvex ( ( 𝐺𝑚 ) ‘ 𝑚 ) ∈ V
69 68 56 fnmpti ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑀 )
70 eqfnfv ( ( ( 𝐺𝑀 ) Fn ( 𝑀 ... 𝑀 ) ∧ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑀 ) ) → ( ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) )
71 67 69 70 sylancl ( 𝜑 → ( ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝐺𝑀 ) ‘ 𝑘 ) = ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑘 ) ) )
72 66 71 mpbird ( 𝜑 → ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
73 72 a1i ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝐺𝑀 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
74 1 eleq2i ( 𝑤𝑍𝑤 ∈ ( ℤ𝑀 ) )
75 13 ffvelrnda ( ( 𝜑𝑤𝑍 ) → ( 𝐺𝑤 ) ∈ 𝐽 )
76 simpr ( ( 𝜑𝑤𝑍 ) → 𝑤𝑍 )
77 3simpa ( ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) → ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) )
78 77 reximi ( ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) → ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) )
79 78 ss2abi { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) }
80 1 fvexi 𝑍 ∈ V
81 nfv 𝑘 𝑤𝑍
82 12 81 nfan 𝑘 ( 𝜑𝑤𝑍 )
83 6 adantr ( ( 𝜑𝑤𝑍 ) → 𝐴𝑉 )
84 simpl ( ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) → : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 )
85 ovex ( 𝑀 ... ( 𝑘 + 1 ) ) ∈ V
86 elmapg ( ( 𝐴𝑉 ∧ ( 𝑀 ... ( 𝑘 + 1 ) ) ∈ V ) → ( ∈ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ↔ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) )
87 85 86 mpan2 ( 𝐴𝑉 → ( ∈ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ↔ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) )
88 84 87 syl5ibr ( 𝐴𝑉 → ( ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) → ∈ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) )
89 88 abssdv ( 𝐴𝑉 → { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) )
90 83 89 syl ( ( 𝜑𝑤𝑍 ) → { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) )
91 ovex ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∈ V
92 ssexg ( ( { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ⊆ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∧ ( 𝐴m ( 𝑀 ... ( 𝑘 + 1 ) ) ) ∈ V ) → { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V )
93 90 91 92 sylancl ( ( 𝜑𝑤𝑍 ) → { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V )
94 93 a1d ( ( 𝜑𝑤𝑍 ) → ( 𝑘𝑍 → { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) )
95 82 94 ralrimi ( ( 𝜑𝑤𝑍 ) → ∀ 𝑘𝑍 { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V )
96 abrexex2g ( ( 𝑍 ∈ V ∧ ∀ 𝑘𝑍 { ∣ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) → { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V )
97 80 95 96 sylancr ( ( 𝜑𝑤𝑍 ) → { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V )
98 ssexg ( ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ⊆ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∧ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ∈ V ) → { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V )
99 79 97 98 sylancr ( ( 𝜑𝑤𝑍 ) → { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V )
100 eqeq1 ( 𝑥 = ( 𝐺𝑤 ) → ( 𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ↔ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) )
101 100 3anbi2d ( 𝑥 = ( 𝐺𝑤 ) → ( ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) )
102 101 rexbidv ( 𝑥 = ( 𝐺𝑤 ) → ( ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) )
103 102 abbidv ( 𝑥 = ( 𝐺𝑤 ) → { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
104 103 eleq1d ( 𝑥 = ( 𝐺𝑤 ) → ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ↔ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) )
105 oveq2 ( 𝑥 = ( 𝐺𝑤 ) → ( 𝑤 𝐹 𝑥 ) = ( 𝑤 𝐹 ( 𝐺𝑤 ) ) )
106 105 103 eqeq12d ( 𝑥 = ( 𝐺𝑤 ) → ( ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ↔ ( 𝑤 𝐹 ( 𝐺𝑤 ) ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) )
107 104 106 imbi12d ( 𝑥 = ( 𝐺𝑤 ) → ( ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ↔ ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺𝑤 ) ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) )
108 107 imbi2d ( 𝑥 = ( 𝐺𝑤 ) → ( ( 𝑤𝑍 → ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ↔ ( 𝑤𝑍 → ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺𝑤 ) ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) ) )
109 11 ovmpt4g ( ( 𝑤𝑍𝑥𝐽 ∧ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) → ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
110 109 3com12 ( ( 𝑥𝐽𝑤𝑍 ∧ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V ) → ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
111 110 3exp ( 𝑥𝐽 → ( 𝑤𝑍 → ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 𝑥 ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴𝑥 = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) )
112 108 111 vtoclga ( ( 𝐺𝑤 ) ∈ 𝐽 → ( 𝑤𝑍 → ( { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ∈ V → ( 𝑤 𝐹 ( 𝐺𝑤 ) ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) ) )
113 75 76 99 112 syl3c ( ( 𝜑𝑤𝑍 ) → ( 𝑤 𝐹 ( 𝐺𝑤 ) ) = { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } )
114 113 79 eqsstrdi ( ( 𝜑𝑤𝑍 ) → ( 𝑤 𝐹 ( 𝐺𝑤 ) ) ⊆ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } )
115 114 15 sseldd ( ( 𝜑𝑤𝑍 ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } )
116 fvex ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ V
117 feq1 ( = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ↔ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) )
118 reseq1 ( = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) )
119 118 eqeq2d ( = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ↔ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) )
120 117 119 anbi12d ( = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) )
121 120 rexbidv ( = ( 𝐺 ‘ ( 𝑤 + 1 ) ) → ( ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) ↔ ∃ 𝑘𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) ) )
122 116 121 elab ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ∈ { ∣ ∃ 𝑘𝑍 ( : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ↾ ( 𝑀 ... 𝑘 ) ) ) } ↔ ∃ 𝑘𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) )
123 115 122 sylib ( ( 𝜑𝑤𝑍 ) → ∃ 𝑘𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) )
124 nfv 𝑘 ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
125 simprl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 )
126 fzssp1 ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... ( 𝑘 + 1 ) )
127 fssres ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... ( 𝑘 + 1 ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 )
128 125 126 127 sylancl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 )
129 128 fdmd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → dom ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑀 ... 𝑘 ) )
130 eqid ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) )
131 68 130 fnmpti ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑤 )
132 simprr ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
133 132 fneq1d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) Fn ( 𝑀 ... 𝑤 ) ↔ ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... 𝑤 ) ) )
134 131 133 mpbiri ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) Fn ( 𝑀 ... 𝑤 ) )
135 134 fndmd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → dom ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑀 ... 𝑤 ) )
136 129 135 eqtr3d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) )
137 simplr ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘𝑍 )
138 137 1 eleqtrdi ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
139 fzopth ( 𝑘 ∈ ( ℤ𝑀 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) ↔ ( 𝑀 = 𝑀𝑘 = 𝑤 ) ) )
140 138 139 syl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑤 ) ↔ ( 𝑀 = 𝑀𝑘 = 𝑤 ) ) )
141 136 140 mpbid ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 = 𝑀𝑘 = 𝑤 ) )
142 141 simprd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑘 = 𝑤 )
143 142 oveq1d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑘 + 1 ) = ( 𝑤 + 1 ) )
144 143 oveq2d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) )
145 elfzp1 ( 𝑘 ∈ ( ℤ𝑀 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) ) )
146 138 145 syl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) ) )
147 136 reseq2d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) )
148 fzssp1 ( 𝑀 ... 𝑤 ) ⊆ ( 𝑀 ... ( 𝑤 + 1 ) )
149 resmpt ( ( 𝑀 ... 𝑤 ) ⊆ ( 𝑀 ... ( 𝑤 + 1 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
150 148 149 ax-mp ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑤 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) )
151 147 150 eqtr2di ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) )
152 132 151 eqtrd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) )
153 152 fveq1d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) )
154 fvres ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) )
155 fvres ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) )
156 154 155 eqeq12d ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) = ( ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ‘ 𝑥 ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
157 153 156 syl5ibcom ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
158 143 eqeq2d ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑘 + 1 ) ↔ 𝑥 = ( 𝑤 + 1 ) ) )
159 142 138 eqeltrrd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → 𝑤 ∈ ( ℤ𝑀 ) )
160 peano2uz ( 𝑤 ∈ ( ℤ𝑀 ) → ( 𝑤 + 1 ) ∈ ( ℤ𝑀 ) )
161 eluzfz2 ( ( 𝑤 + 1 ) ∈ ( ℤ𝑀 ) → ( 𝑤 + 1 ) ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) )
162 fveq2 ( 𝑚 = ( 𝑤 + 1 ) → ( 𝐺𝑚 ) = ( 𝐺 ‘ ( 𝑤 + 1 ) ) )
163 id ( 𝑚 = ( 𝑤 + 1 ) → 𝑚 = ( 𝑤 + 1 ) )
164 162 163 fveq12d ( 𝑚 = ( 𝑤 + 1 ) → ( ( 𝐺𝑚 ) ‘ 𝑚 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) )
165 eqid ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) )
166 fvex ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) ∈ V
167 164 165 166 fvmpt ( ( 𝑤 + 1 ) ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) )
168 159 160 161 167 4syl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) )
169 168 eqcomd ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) )
170 fveq2 ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) )
171 fveq2 ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) )
172 170 171 eqeq12d ( 𝑥 = ( 𝑤 + 1 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ ( 𝑤 + 1 ) ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ ( 𝑤 + 1 ) ) ) )
173 169 172 syl5ibrcom ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑤 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
174 158 173 sylbid ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
175 157 174 jaod ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑘 ) ∨ 𝑥 = ( 𝑘 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
176 146 175 sylbid ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) )
177 176 ralrimiv ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) )
178 ffn ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) )
179 178 ad2antrl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) )
180 68 165 fnmpti ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... ( 𝑤 + 1 ) )
181 eqfnfv2 ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) Fn ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) Fn ( 𝑀 ... ( 𝑤 + 1 ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ∧ ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) )
182 179 180 181 sylancl ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝑀 ... ( 𝑘 + 1 ) ) = ( 𝑀 ... ( 𝑤 + 1 ) ) ∧ ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑘 + 1 ) ) ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) )
183 144 177 182 mpbir2and ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
184 183 expr ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
185 eqeq1 ( ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↔ ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
186 185 imbi1d ( ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
187 184 186 syl5ibrcom ( ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) ∧ ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ) → ( ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
188 187 expimpd ( ( ( 𝜑𝑤𝑍 ) ∧ 𝑘𝑍 ) → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
189 188 ex ( ( 𝜑𝑤𝑍 ) → ( 𝑘𝑍 → ( ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) ) )
190 82 124 189 rexlimd ( ( 𝜑𝑤𝑍 ) → ( ∃ 𝑘𝑍 ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺𝑤 ) = ( ( 𝐺 ‘ ( 𝑤 + 1 ) ) ↾ ( 𝑀 ... 𝑘 ) ) ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
191 123 190 mpd ( ( 𝜑𝑤𝑍 ) → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
192 191 expcom ( 𝑤𝑍 → ( 𝜑 → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
193 74 192 sylbir ( 𝑤 ∈ ( ℤ𝑀 ) → ( 𝜑 → ( ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
194 193 a2d ( 𝑤 ∈ ( ℤ𝑀 ) → ( ( 𝜑 → ( 𝐺𝑤 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑤 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ( 𝐺 ‘ ( 𝑤 + 1 ) ) = ( 𝑚 ∈ ( 𝑀 ... ( 𝑤 + 1 ) ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) ) )
195 37 42 47 52 73 194 uzind4 ( 𝑘 ∈ ( ℤ𝑀 ) → ( 𝜑 → ( 𝐺𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
196 195 1 eleq2s ( 𝑘𝑍 → ( 𝜑 → ( 𝐺𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ) )
197 196 impcom ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
198 197 dmeqd ( ( 𝜑𝑘𝑍 ) → dom ( 𝐺𝑘 ) = dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
199 dmmptg ( ∀ 𝑚 ∈ ( 𝑀 ... 𝑘 ) ( ( 𝐺𝑚 ) ‘ 𝑚 ) ∈ V → dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑀 ... 𝑘 ) )
200 68 a1i ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) → ( ( 𝐺𝑚 ) ‘ 𝑚 ) ∈ V )
201 199 200 mprg dom ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑀 ... 𝑘 )
202 198 201 eqtrdi ( ( 𝜑𝑘𝑍 ) → dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑘 ) )
203 202 eqeq1d ( ( 𝜑𝑘𝑍 ) → ( dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ) )
204 simpr ( ( 𝜑𝑘𝑍 ) → 𝑘𝑍 )
205 204 1 eleqtrdi ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( ℤ𝑀 ) )
206 fzopth ( 𝑘 ∈ ( ℤ𝑀 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀𝑘 = 𝑛 ) ) )
207 205 206 syl ( ( 𝜑𝑘𝑍 ) → ( ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀𝑘 = 𝑛 ) ) )
208 203 207 bitrd ( ( 𝜑𝑘𝑍 ) → ( dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑛 ) ↔ ( 𝑀 = 𝑀𝑘 = 𝑛 ) ) )
209 simpr ( ( 𝑀 = 𝑀𝑘 = 𝑛 ) → 𝑘 = 𝑛 )
210 208 209 syl6bi ( ( 𝜑𝑘𝑍 ) → ( dom ( 𝐺𝑘 ) = ( 𝑀 ... 𝑛 ) → 𝑘 = 𝑛 ) )
211 32 210 syl5 ( ( 𝜑𝑘𝑍 ) → ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) → 𝑘 = 𝑛 ) )
212 oveq2 ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) )
213 212 feq2d ( 𝑛 = 𝑘 → ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) )
214 4 sbcbidv ( 𝑛 = 𝑘 → ( [ ( 𝐺𝑘 ) / 𝑔 ] 𝜓[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) )
215 213 214 anbi12d ( 𝑛 = 𝑘 → ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) ↔ ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) ) )
216 215 equcoms ( 𝑘 = 𝑛 → ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) ↔ ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) ) )
217 216 biimpcd ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) → ( 𝑘 = 𝑛 → ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) ) )
218 211 217 sylcom ( ( 𝜑𝑘𝑍 ) → ( ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) → ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) ) )
219 218 rexlimdvw ( ( 𝜑𝑘𝑍 ) → ( ∃ 𝑛𝑍 ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑛 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜓 ) → ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) ) )
220 30 219 mpd ( ( 𝜑𝑘𝑍 ) → ( ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴[ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 ) )
221 220 simpld ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 )
222 eluzfz2 ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) )
223 205 222 syl ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) )
224 221 223 ffvelrnd ( ( 𝜑𝑘𝑍 ) → ( ( 𝐺𝑘 ) ‘ 𝑘 ) ∈ 𝐴 )
225 55 cbvmptv ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑘𝑍 ↦ ( ( 𝐺𝑘 ) ‘ 𝑘 ) )
226 12 224 225 fmptdf ( 𝜑 → ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) : 𝑍𝐴 )
227 220 simprd ( ( 𝜑𝑘𝑍 ) → [ ( 𝐺𝑘 ) / 𝑔 ] 𝜃 )
228 197 227 sbceq1dd ( ( 𝜑𝑘𝑍 ) → [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 )
229 228 ex ( 𝜑 → ( 𝑘𝑍[ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) )
230 12 229 ralrimi ( 𝜑 → ∀ 𝑘𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 )
231 mpteq1 ( ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) → ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
232 dfsbcq ( ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓[ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) )
233 212 231 232 3syl ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓[ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) )
234 4 sbcbidv ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓[ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) )
235 233 234 bitrd ( 𝑛 = 𝑘 → ( [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓[ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 ) )
236 235 cbvralvw ( ∀ 𝑛𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ↔ ∀ 𝑘𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑘 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜃 )
237 230 236 sylibr ( 𝜑 → ∀ 𝑛𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 )
238 80 mptex ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ∈ V
239 feq1 ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 : 𝑍𝐴 ↔ ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) : 𝑍𝐴 ) )
240 vex 𝑓 ∈ V
241 240 resex ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) ∈ V
242 241 2 sbcie ( [ ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) / 𝑔 ] 𝜓𝜒 )
243 reseq1 ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) = ( ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) )
244 fzssuz ( 𝑀 ... 𝑛 ) ⊆ ( ℤ𝑀 )
245 244 1 sseqtrri ( 𝑀 ... 𝑛 ) ⊆ 𝑍
246 resmpt ( ( 𝑀 ... 𝑛 ) ⊆ 𝑍 → ( ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
247 245 246 ax-mp ( ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) )
248 243 247 eqtrdi ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) = ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) )
249 248 sbceq1d ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( [ ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) / 𝑔 ] 𝜓[ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) )
250 242 249 bitr3id ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( 𝜒[ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) )
251 250 ralbidv ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( ∀ 𝑛𝑍 𝜒 ↔ ∀ 𝑛𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) )
252 239 251 anbi12d ( 𝑓 = ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) → ( ( 𝑓 : 𝑍𝐴 ∧ ∀ 𝑛𝑍 𝜒 ) ↔ ( ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) : 𝑍𝐴 ∧ ∀ 𝑛𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) ) )
253 238 252 spcev ( ( ( 𝑚𝑍 ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) : 𝑍𝐴 ∧ ∀ 𝑛𝑍 [ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) ↦ ( ( 𝐺𝑚 ) ‘ 𝑚 ) ) / 𝑔 ] 𝜓 ) → ∃ 𝑓 ( 𝑓 : 𝑍𝐴 ∧ ∀ 𝑛𝑍 𝜒 ) )
254 226 237 253 syl2anc ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑍𝐴 ∧ ∀ 𝑛𝑍 𝜒 ) )