Metamath Proof Explorer


Theorem sdc

Description: Strong dependent choice. Suppose we may choose an element of A such that property ps holds, and suppose that if we have already chosen the first k elements (represented here by a function from 1 ... k to A ), we may choose another element so that all k + 1 elements taken together have property ps . Then there exists an infinite sequence of elements of A such that the first n terms of this sequence satisfy ps for all n . This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses sdc.1 Z=M
sdc.2 g=fMnψχ
sdc.3 n=Mψτ
sdc.4 n=kψθ
sdc.5 g=hn=k+1ψσ
sdc.6 φAV
sdc.7 φM
sdc.8 φgg:MAτ
sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
Assertion sdc φff:ZAnZχ

Proof

Step Hyp Ref Expression
1 sdc.1 Z=M
2 sdc.2 g=fMnψχ
3 sdc.3 n=Mψτ
4 sdc.4 n=kψθ
5 sdc.5 g=hn=k+1ψσ
6 sdc.6 φAV
7 sdc.7 φM
8 sdc.8 φgg:MAτ
9 sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
10 eqid g|nZg:MnAψ=g|nZg:MnAψ
11 eqid Z=Z
12 oveq2 n=kMn=Mk
13 12 feq2d n=kg:MnAg:MkA
14 13 4 anbi12d n=kg:MnAψg:MkAθ
15 14 cbvrexvw nZg:MnAψkZg:MkAθ
16 15 abbii g|nZg:MnAψ=g|kZg:MkAθ
17 eqid h|kZh:Mk+1Af=hMkσ=h|kZh:Mk+1Af=hMkσ
18 11 16 17 mpoeq123i jZ,fg|nZg:MnAψh|kZh:Mk+1Af=hMkσ=jZ,fg|kZg:MkAθh|kZh:Mk+1Af=hMkσ
19 eqidd j=yh|kZh:Mk+1Af=hMkσ=h|kZh:Mk+1Af=hMkσ
20 eqeq1 f=xf=hMkx=hMk
21 20 3anbi2d f=xh:Mk+1Af=hMkσh:Mk+1Ax=hMkσ
22 21 rexbidv f=xkZh:Mk+1Af=hMkσkZh:Mk+1Ax=hMkσ
23 22 abbidv f=xh|kZh:Mk+1Af=hMkσ=h|kZh:Mk+1Ax=hMkσ
24 19 23 cbvmpov jZ,fg|nZg:MnAψh|kZh:Mk+1Af=hMkσ=yZ,xg|nZg:MnAψh|kZh:Mk+1Ax=hMkσ
25 18 24 eqtr3i jZ,fg|kZg:MkAθh|kZh:Mk+1Af=hMkσ=yZ,xg|nZg:MnAψh|kZh:Mk+1Ax=hMkσ
26 1 2 3 4 5 6 7 8 9 10 25 sdclem1 φff:ZAnZχ