Metamath Proof Explorer


Theorem seccl

Description: The closure of the secant function with a complex argument. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion seccl AcosA0secA

Proof

Step Hyp Ref Expression
1 secval AcosA0secA=1cosA
2 coscl AcosA
3 2 adantr AcosA0cosA
4 simpr AcosA0cosA0
5 3 4 reccld AcosA01cosA
6 1 5 eqeltrd AcosA0secA