Metamath Proof Explorer


Theorem sectepi

Description: If F is a section of G , then G is an epimorphism. An epimorphism that arises from a section is also known as asplit epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses sectepi.b B=BaseC
sectepi.e E=EpiC
sectepi.s S=SectC
sectepi.c φCCat
sectepi.x φXB
sectepi.y φYB
sectepi.1 φFXSYG
Assertion sectepi φGYEX

Proof

Step Hyp Ref Expression
1 sectepi.b B=BaseC
2 sectepi.e E=EpiC
3 sectepi.s S=SectC
4 sectepi.c φCCat
5 sectepi.x φXB
6 sectepi.y φYB
7 sectepi.1 φFXSYG
8 eqid oppCatC=oppCatC
9 8 1 oppcbas B=BaseoppCatC
10 eqid MonooppCatC=MonooppCatC
11 eqid SectoppCatC=SectoppCatC
12 8 oppccat CCatoppCatCCat
13 4 12 syl φoppCatCCat
14 1 8 4 5 6 3 11 oppcsect φGXSectoppCatCYFFXSYG
15 7 14 mpbird φGXSectoppCatCYF
16 9 10 11 13 5 6 15 sectmon φGXMonooppCatCY
17 8 4 10 2 oppcmon φXMonooppCatCY=YEX
18 16 17 eleqtrd φGYEX