Metamath Proof Explorer


Theorem secval

Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion secval AcosA0secA=1cosA

Proof

Step Hyp Ref Expression
1 fveq2 y=Acosy=cosA
2 1 neeq1d y=Acosy0cosA0
3 2 elrab Ay|cosy0AcosA0
4 fveq2 x=Acosx=cosA
5 4 oveq2d x=A1cosx=1cosA
6 df-sec sec=xy|cosy01cosx
7 ovex 1cosAV
8 5 6 7 fvmpt Ay|cosy0secA=1cosA
9 3 8 sylbir AcosA0secA=1cosA