Metamath Proof Explorer


Theorem secval

Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion secval A cos A 0 sec A = 1 cos A

Proof

Step Hyp Ref Expression
1 fveq2 y = A cos y = cos A
2 1 neeq1d y = A cos y 0 cos A 0
3 2 elrab A y | cos y 0 A cos A 0
4 fveq2 x = A cos x = cos A
5 4 oveq2d x = A 1 cos x = 1 cos A
6 df-sec sec = x y | cos y 0 1 cos x
7 ovex 1 cos A V
8 5 6 7 fvmpt A y | cos y 0 sec A = 1 cos A
9 3 8 sylbir A cos A 0 sec A = 1 cos A