Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for David A. Wheeler
Reciprocal trigonometric functions (sec, csc, cot)
secval
Next ⟩
cscval
Metamath Proof Explorer
Ascii
Unicode
Theorem
secval
Description:
Value of the secant function.
(Contributed by
David A. Wheeler
, 14-Mar-2014)
Ref
Expression
Assertion
secval
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
sec
⁡
A
=
1
cos
⁡
A
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
y
=
A
→
cos
⁡
y
=
cos
⁡
A
2
1
neeq1d
⊢
y
=
A
→
cos
⁡
y
≠
0
↔
cos
⁡
A
≠
0
3
2
elrab
⊢
A
∈
y
∈
ℂ
|
cos
⁡
y
≠
0
↔
A
∈
ℂ
∧
cos
⁡
A
≠
0
4
fveq2
⊢
x
=
A
→
cos
⁡
x
=
cos
⁡
A
5
4
oveq2d
⊢
x
=
A
→
1
cos
⁡
x
=
1
cos
⁡
A
6
df-sec
⊢
sec
=
x
∈
y
∈
ℂ
|
cos
⁡
y
≠
0
⟼
1
cos
⁡
x
7
ovex
⊢
1
cos
⁡
A
∈
V
8
5
6
7
fvmpt
⊢
A
∈
y
∈
ℂ
|
cos
⁡
y
≠
0
→
sec
⁡
A
=
1
cos
⁡
A
9
3
8
sylbir
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
sec
⁡
A
=
1
cos
⁡
A