Metamath Proof Explorer


Theorem selvcllem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem1.u U=ImPolyR
selvcllem1.t T=JmPolyU
selvcllem1.i φIV
selvcllem1.j φJW
selvcllem1.r φRCRing
Assertion selvcllem1 φTAssAlg

Proof

Step Hyp Ref Expression
1 selvcllem1.u U=ImPolyR
2 selvcllem1.t T=JmPolyU
3 selvcllem1.i φIV
4 selvcllem1.j φJW
5 selvcllem1.r φRCRing
6 1 mplcrng IVRCRingUCRing
7 3 5 6 syl2anc φUCRing
8 2 mplassa JWUCRingTAssAlg
9 4 7 8 syl2anc φTAssAlg