Metamath Proof Explorer


Theorem seqdistr

Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqdistr.1 φxSySx+˙yS
seqdistr.2 φxSySCTx+˙y=CTx+˙CTy
seqdistr.3 φNM
seqdistr.4 φxMNGxS
seqdistr.5 φxMNFx=CTGx
Assertion seqdistr φseqM+˙FN=CTseqM+˙GN

Proof

Step Hyp Ref Expression
1 seqdistr.1 φxSySx+˙yS
2 seqdistr.2 φxSySCTx+˙y=CTx+˙CTy
3 seqdistr.3 φNM
4 seqdistr.4 φxMNGxS
5 seqdistr.5 φxMNFx=CTGx
6 oveq2 z=x+˙yCTz=CTx+˙y
7 eqid zSCTz=zSCTz
8 ovex CTx+˙yV
9 6 7 8 fvmpt x+˙ySzSCTzx+˙y=CTx+˙y
10 1 9 syl φxSySzSCTzx+˙y=CTx+˙y
11 oveq2 z=xCTz=CTx
12 ovex CTxV
13 11 7 12 fvmpt xSzSCTzx=CTx
14 13 ad2antrl φxSySzSCTzx=CTx
15 oveq2 z=yCTz=CTy
16 ovex CTyV
17 15 7 16 fvmpt ySzSCTzy=CTy
18 17 ad2antll φxSySzSCTzy=CTy
19 14 18 oveq12d φxSySzSCTzx+˙zSCTzy=CTx+˙CTy
20 2 10 19 3eqtr4d φxSySzSCTzx+˙y=zSCTzx+˙zSCTzy
21 oveq2 z=GxCTz=CTGx
22 ovex CTGxV
23 21 7 22 fvmpt GxSzSCTzGx=CTGx
24 4 23 syl φxMNzSCTzGx=CTGx
25 24 5 eqtr4d φxMNzSCTzGx=Fx
26 1 4 3 20 25 seqhomo φzSCTzseqM+˙GN=seqM+˙FN
27 3 4 1 seqcl φseqM+˙GNS
28 oveq2 z=seqM+˙GNCTz=CTseqM+˙GN
29 ovex CTseqM+˙GNV
30 28 7 29 fvmpt seqM+˙GNSzSCTzseqM+˙GN=CTseqM+˙GN
31 27 30 syl φzSCTzseqM+˙GN=CTseqM+˙GN
32 26 31 eqtr3d φseqM+˙FN=CTseqM+˙GN