Metamath Proof Explorer


Theorem seqfeq

Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfeq.1 φM
seqfeq.2 φkMFk=Gk
Assertion seqfeq φseqM+˙F=seqM+˙G

Proof

Step Hyp Ref Expression
1 seqfeq.1 φM
2 seqfeq.2 φkMFk=Gk
3 seqfn MseqM+˙FFnM
4 1 3 syl φseqM+˙FFnM
5 seqfn MseqM+˙GFnM
6 1 5 syl φseqM+˙GFnM
7 simpr φxMxM
8 elfzuz kMxkM
9 8 2 sylan2 φkMxFk=Gk
10 9 adantlr φxMkMxFk=Gk
11 7 10 seqfveq φxMseqM+˙Fx=seqM+˙Gx
12 4 6 11 eqfnfvd φseqM+˙F=seqM+˙G