Metamath Proof Explorer


Theorem seqfveq

Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq.1 φNM
seqfveq.2 φkMNFk=Gk
Assertion seqfveq φseqM+˙FN=seqM+˙GN

Proof

Step Hyp Ref Expression
1 seqfveq.1 φNM
2 seqfveq.2 φkMNFk=Gk
3 eluzel2 NMM
4 1 3 syl φM
5 uzid MMM
6 4 5 syl φMM
7 seq1 MseqM+˙FM=FM
8 4 7 syl φseqM+˙FM=FM
9 fveq2 k=MFk=FM
10 fveq2 k=MGk=GM
11 9 10 eqeq12d k=MFk=GkFM=GM
12 2 ralrimiva φkMNFk=Gk
13 eluzfz1 NMMMN
14 1 13 syl φMMN
15 11 12 14 rspcdva φFM=GM
16 8 15 eqtrd φseqM+˙FM=GM
17 fzp1ss MM+1NMN
18 4 17 syl φM+1NMN
19 18 sselda φkM+1NkMN
20 19 2 syldan φkM+1NFk=Gk
21 6 16 1 20 seqfveq2 φseqM+˙FN=seqM+˙GN