Metamath Proof Explorer


Theorem seqm1

Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion seqm1 MNM+1seqM+˙FN=seqM+˙FN1+˙FN

Proof

Step Hyp Ref Expression
1 eluzp1m1 MNM+1N1M
2 seqp1 N1MseqM+˙FN-1+1=seqM+˙FN1+˙FN-1+1
3 1 2 syl MNM+1seqM+˙FN-1+1=seqM+˙FN1+˙FN-1+1
4 eluzelcn NM+1N
5 ax-1cn 1
6 npcan N1N-1+1=N
7 4 5 6 sylancl NM+1N-1+1=N
8 7 adantl MNM+1N-1+1=N
9 8 fveq2d MNM+1seqM+˙FN-1+1=seqM+˙FN
10 8 fveq2d MNM+1FN-1+1=FN
11 10 oveq2d MNM+1seqM+˙FN1+˙FN-1+1=seqM+˙FN1+˙FN
12 3 9 11 3eqtr3d MNM+1seqM+˙FN=seqM+˙FN1+˙FN