Metamath Proof Explorer


Theorem serle

Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serge0.1 φNM
serge0.2 φkMNFk
serle.3 φkMNGk
serle.4 φkMNFkGk
Assertion serle φseqM+FNseqM+GN

Proof

Step Hyp Ref Expression
1 serge0.1 φNM
2 serge0.2 φkMNFk
3 serle.3 φkMNGk
4 serle.4 φkMNFkGk
5 fveq2 x=kGx=Gk
6 fveq2 x=kFx=Fk
7 5 6 oveq12d x=kGxFx=GkFk
8 eqid xVGxFx=xVGxFx
9 ovex GkFkV
10 7 8 9 fvmpt kVxVGxFxk=GkFk
11 10 elv xVGxFxk=GkFk
12 3 2 resubcld φkMNGkFk
13 11 12 eqeltrid φkMNxVGxFxk
14 3 2 subge0d φkMN0GkFkFkGk
15 4 14 mpbird φkMN0GkFk
16 15 11 breqtrrdi φkMN0xVGxFxk
17 1 13 16 serge0 φ0seqM+xVGxFxN
18 3 recnd φkMNGk
19 2 recnd φkMNFk
20 11 a1i φkMNxVGxFxk=GkFk
21 1 18 19 20 sersub φseqM+xVGxFxN=seqM+GNseqM+FN
22 17 21 breqtrd φ0seqM+GNseqM+FN
23 readdcl kxk+x
24 23 adantl φkxk+x
25 1 3 24 seqcl φseqM+GN
26 1 2 24 seqcl φseqM+FN
27 25 26 subge0d φ0seqM+GNseqM+FNseqM+FNseqM+GN
28 22 27 mpbid φseqM+FNseqM+GN