Metamath Proof Explorer


Theorem setis

Description: Version of setrec2 expressed as an induction schema. This theorem is a generalization of tfis3 . (Contributed by Emmett Weisz, 27-Feb-2022)

Ref Expression
Hypotheses setis.1 B=setrecsF
setis.2 b=Aψχ
setis.3 φabaψbFaψ
Assertion setis φABχ

Proof

Step Hyp Ref Expression
1 setis.1 B=setrecsF
2 setis.2 b=Aψχ
3 setis.3 φabaψbFaψ
4 ssabral ab|ψbaψ
5 ssabral Fab|ψbFaψ
6 4 5 imbi12i ab|ψFab|ψbaψbFaψ
7 6 albii aab|ψFab|ψabaψbFaψ
8 3 7 sylibr φaab|ψFab|ψ
9 1 8 setrec2v φBb|ψ
10 9 sseld φABAb|ψ
11 2 elabg ABAb|ψχ
12 10 11 mpbidi φABχ