Metamath Proof Explorer


Theorem sge0isummpt

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt.kph kφ
sge0isummpt.a φkZA0+∞
sge0isummpt.m φM
sge0isummpt.z Z=M
sge0isummpt.b φseqM+kZAB
Assertion sge0isummpt φsum^kZA=B

Proof

Step Hyp Ref Expression
1 sge0isummpt.kph kφ
2 sge0isummpt.a φkZA0+∞
3 sge0isummpt.m φM
4 sge0isummpt.z Z=M
5 sge0isummpt.b φseqM+kZAB
6 eqid kZA=kZA
7 1 2 6 fmptdf φkZA:Z0+∞
8 eqid seqM+kZA=seqM+kZA
9 3 4 7 8 5 sge0isum φsum^kZA=B