Metamath Proof Explorer


Theorem sge0isummpt

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt.kph k φ
sge0isummpt.a φ k Z A 0 +∞
sge0isummpt.m φ M
sge0isummpt.z Z = M
sge0isummpt.b φ seq M + k Z A B
Assertion sge0isummpt φ sum^ k Z A = B

Proof

Step Hyp Ref Expression
1 sge0isummpt.kph k φ
2 sge0isummpt.a φ k Z A 0 +∞
3 sge0isummpt.m φ M
4 sge0isummpt.z Z = M
5 sge0isummpt.b φ seq M + k Z A B
6 eqid k Z A = k Z A
7 1 2 6 fmptdf φ k Z A : Z 0 +∞
8 eqid seq M + k Z A = seq M + k Z A
9 3 4 7 8 5 sge0isum φ sum^ k Z A = B