Metamath Proof Explorer


Theorem sge0ssrempt

Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ssrempt.xph x φ
sge0ssrempt.a φ A V
sge0ssrempt.b φ x A B 0 +∞
sge0ssrempt.re φ sum^ x A B
sge0ssrempt.c φ C A
Assertion sge0ssrempt φ sum^ x C B

Proof

Step Hyp Ref Expression
1 sge0ssrempt.xph x φ
2 sge0ssrempt.a φ A V
3 sge0ssrempt.b φ x A B 0 +∞
4 sge0ssrempt.re φ sum^ x A B
5 sge0ssrempt.c φ C A
6 5 resmptd φ x A B C = x C B
7 6 fveq2d φ sum^ x A B C = sum^ x C B
8 7 eqcomd φ sum^ x C B = sum^ x A B C
9 eqid x A B = x A B
10 1 3 9 fmptdf φ x A B : A 0 +∞
11 2 10 4 sge0ssre φ sum^ x A B C
12 8 11 eqeltrd φ sum^ x C B