Metamath Proof Explorer


Theorem sgmval2

Description: The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmval2 ABAσB=kp|pBkA

Proof

Step Hyp Ref Expression
1 zcn AA
2 sgmval ABAσB=kp|pBkA
3 1 2 sylan ABAσB=kp|pBkA
4 ssrab2 p|pB
5 simpr ABkp|pBkp|pB
6 4 5 sselid ABkp|pBk
7 6 nncnd ABkp|pBk
8 6 nnne0d ABkp|pBk0
9 simpll ABkp|pBA
10 7 8 9 cxpexpzd ABkp|pBkA=kA
11 10 sumeq2dv ABkp|pBkA=kp|pBkA
12 3 11 eqtrd ABAσB=kp|pBkA