Metamath Proof Explorer


Theorem sgrp2sgrp

Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020)

Ref Expression
Assertion sgrp2sgrp Could not format assertion : No typesetting found for |- ( M e. SGrpALT <-> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2mgm MMgmALTMMgm
2 1 anbi1i MMgmALT+MassLawBaseMMMgm+MassLawBaseM
3 fvex +MV
4 fvex BaseMV
5 3 4 pm3.2i +MVBaseMV
6 isasslaw +MVBaseMV+MassLawBaseMxBaseMyBaseMzBaseMx+My+Mz=x+My+Mz
7 5 6 mp1i MMgm+MassLawBaseMxBaseMyBaseMzBaseMx+My+Mz=x+My+Mz
8 7 pm5.32i MMgm+MassLawBaseMMMgmxBaseMyBaseMzBaseMx+My+Mz=x+My+Mz
9 2 8 bitri MMgmALT+MassLawBaseMMMgmxBaseMyBaseMzBaseMx+My+Mz=x+My+Mz
10 eqid BaseM=BaseM
11 eqid +M=+M
12 10 11 issgrpALT MSGrpALTMMgmALT+MassLawBaseM
13 10 11 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) with typecode |-
14 9 12 13 3bitr4i Could not format ( M e. SGrpALT <-> M e. Smgrp ) : No typesetting found for |- ( M e. SGrpALT <-> M e. Smgrp ) with typecode |-