Metamath Proof Explorer


Theorem shftdm

Description: Domain of a relation shifted by A . The set on the right is more commonly notated as ( dom F + A ) (meaning add A to every element of dom F ). (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftdm AdomFshiftA=x|xAdomF

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 1 shftfval AFshiftA=xy|xxAFy
3 2 dmeqd AdomFshiftA=domxy|xxAFy
4 19.42v yxxAFyxyxAFy
5 ovex xAV
6 5 eldm xAdomFyxAFy
7 6 anbi2i xxAdomFxyxAFy
8 4 7 bitr4i yxxAFyxxAdomF
9 8 abbii x|yxxAFy=x|xxAdomF
10 dmopab domxy|xxAFy=x|yxxAFy
11 df-rab x|xAdomF=x|xxAdomF
12 9 10 11 3eqtr4i domxy|xxAFy=x|xAdomF
13 3 12 eqtrdi AdomFshiftA=x|xAdomF