Metamath Proof Explorer


Theorem shlesb1i

Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 AS
shlesb1.2 BS
Assertion shlesb1i ABA+B=B

Proof

Step Hyp Ref Expression
1 shlesb1.1 AS
2 shlesb1.2 BS
3 ssid BB
4 3 biantrur ABBBAB
5 2 1 2 shslubi BBABB+AB
6 2 1 shsub2i BA+B
7 eqss A+B=BA+BBBA+B
8 6 7 mpbiran2 A+B=BA+BB
9 1 2 shscomi A+B=B+A
10 9 sseq1i A+BBB+AB
11 8 10 bitr2i B+ABA+B=B
12 4 5 11 3bitri ABA+B=B