Description: The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shmod.1 | |
|
shmod.2 | |
||
shmod.3 | |
||
Assertion | shmodi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shmod.1 | |
|
2 | shmod.2 | |
|
3 | shmod.3 | |
|
4 | 1 2 3 | shmodsi | |
5 | ineq1 | |
|
6 | 5 | sseq1d | |
7 | 4 6 | imbitrid | |
8 | 7 | imp | |
9 | 2 3 | shincli | |
10 | 1 9 | shsleji | |
11 | 8 10 | sstrdi | |