Metamath Proof Explorer


Theorem shsval2i

Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 AS
shlesb1.2 BS
Assertion shsval2i A+B=xS|ABx

Proof

Step Hyp Ref Expression
1 shlesb1.1 AS
2 shlesb1.2 BS
3 ssun1 AAB
4 ssintub ABxS|ABx
5 3 4 sstri AxS|ABx
6 ssun2 BAB
7 6 4 sstri BxS|ABx
8 5 7 pm3.2i AxS|ABxBxS|ABx
9 ssrab2 xS|ABxS
10 1 2 shscli A+BS
11 1 2 shunssi ABA+B
12 sseq2 x=A+BABxABA+B
13 12 rspcev A+BSABA+BxSABx
14 10 11 13 mp2an xSABx
15 rabn0 xS|ABxxSABx
16 14 15 mpbir xS|ABx
17 shintcl xS|ABxSxS|ABxxS|ABxS
18 9 16 17 mp2an xS|ABxS
19 1 2 18 shslubi AxS|ABxBxS|ABxA+BxS|ABx
20 8 19 mpbi A+BxS|ABx
21 12 elrab A+BxS|ABxA+BSABA+B
22 10 11 21 mpbir2an A+BxS|ABx
23 intss1 A+BxS|ABxxS|ABxA+B
24 22 23 ax-mp xS|ABxA+B
25 20 24 eqssi A+B=xS|ABx