Metamath Proof Explorer


Theorem signswplusg

Description: The operation of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsw.w W = Base ndx 1 0 1 + ndx ˙
Assertion signswplusg ˙ = + W

Proof

Step Hyp Ref Expression
1 signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsw.w W = Base ndx 1 0 1 + ndx ˙
3 tpex 1 0 1 V
4 3 3 mpoex a 1 0 1 , b 1 0 1 if b = 0 a b V
5 1 4 eqeltri ˙ V
6 2 grpplusg ˙ V ˙ = + W
7 5 6 ax-mp ˙ = + W