Metamath Proof Explorer


Theorem simpgnsgbid

Description: A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023)

Ref Expression
Hypotheses simpgnsgbid.1 B = Base G
simpgnsgbid.2 0 ˙ = 0 G
simpgnsgbid.3 φ G Grp
simpgnsgbid.4 φ ¬ 0 ˙ = B
Assertion simpgnsgbid φ G SimpGrp NrmSGrp G = 0 ˙ B

Proof

Step Hyp Ref Expression
1 simpgnsgbid.1 B = Base G
2 simpgnsgbid.2 0 ˙ = 0 G
3 simpgnsgbid.3 φ G Grp
4 simpgnsgbid.4 φ ¬ 0 ˙ = B
5 simpr φ G SimpGrp G SimpGrp
6 1 2 5 simpgnsgd φ G SimpGrp NrmSGrp G = 0 ˙ B
7 3 adantr φ NrmSGrp G = 0 ˙ B G Grp
8 4 adantr φ NrmSGrp G = 0 ˙ B ¬ 0 ˙ = B
9 simpr φ NrmSGrp G = 0 ˙ B x NrmSGrp G x NrmSGrp G
10 simplr φ NrmSGrp G = 0 ˙ B x NrmSGrp G NrmSGrp G = 0 ˙ B
11 9 10 eleqtrd φ NrmSGrp G = 0 ˙ B x NrmSGrp G x 0 ˙ B
12 elpri x 0 ˙ B x = 0 ˙ x = B
13 11 12 syl φ NrmSGrp G = 0 ˙ B x NrmSGrp G x = 0 ˙ x = B
14 1 2 7 8 13 2nsgsimpgd φ NrmSGrp G = 0 ˙ B G SimpGrp
15 6 14 impbida φ G SimpGrp NrmSGrp G = 0 ˙ B