Metamath Proof Explorer


Theorem simpgnsgeqd

Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgeqd.1 B = Base G
simpgnsgeqd.2 0 ˙ = 0 G
simpgnsgeqd.3 φ G SimpGrp
simpgnsgeqd.4 φ A NrmSGrp G
Assertion simpgnsgeqd φ A = 0 ˙ A = B

Proof

Step Hyp Ref Expression
1 simpgnsgeqd.1 B = Base G
2 simpgnsgeqd.2 0 ˙ = 0 G
3 simpgnsgeqd.3 φ G SimpGrp
4 simpgnsgeqd.4 φ A NrmSGrp G
5 1 2 3 simpgnsgd φ NrmSGrp G = 0 ˙ B
6 4 5 eleqtrd φ A 0 ˙ B
7 elpri A 0 ˙ B A = 0 ˙ A = B
8 6 7 syl φ A = 0 ˙ A = B