Metamath Proof Explorer


Theorem sinltx

Description: The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion sinltx A+sinA<A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 1 adantr A+1<AA
3 2 resincld A+1<AsinA
4 1red A+1<A1
5 sinbnd A1sinAsinA1
6 5 simprd AsinA1
7 1 6 syl A+sinA1
8 7 adantr A+1<AsinA1
9 simpr A+1<A1<A
10 3 4 2 8 9 lelttrd A+1<AsinA<A
11 df-3an A0<AA1A0<AA1
12 0xr 0*
13 1re 1
14 elioc2 0*1A01A0<AA1
15 12 13 14 mp2an A01A0<AA1
16 elrp A+A0<A
17 16 anbi1i A+A1A0<AA1
18 11 15 17 3bitr4i A01A+A1
19 sin01bnd A01AA33<sinAsinA<A
20 19 simprd A01sinA<A
21 18 20 sylbir A+A1sinA<A
22 1red A+1
23 10 21 22 1 ltlecasei A+sinA<A