Metamath Proof Explorer


Theorem sinper

Description: The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion sinper AKsinA+K2π=sinA

Proof

Step Hyp Ref Expression
1 sinval AsinA=eiAeiA2i
2 sinval A+K2πsinA+K2π=eiA+K2πeiA+K2π2i
3 1 2 sinperlem AKsinA+K2π=sinA