Metamath Proof Explorer


Theorem sleadd2im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2im Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) <_s ( C +s B ) -> A <_s B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addscom Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
2 1 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
3 addscom Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
4 3 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
5 2 4 breq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-
6 sleadd1im Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) ) with typecode |-
7 5 6 sylbird Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) <_s ( C +s B ) -> A <_s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) <_s ( C +s B ) -> A <_s B ) ) with typecode |-