Metamath Proof Explorer


Theorem slesubsubbd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φANo
sltsubsubbd.2 φBNo
sltsubsubbd.3 φCNo
sltsubsubbd.4 φDNo
Assertion slesubsubbd φA-sCsB-sDA-sBsC-sD

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φANo
2 sltsubsubbd.2 φBNo
3 sltsubsubbd.3 φCNo
4 sltsubsubbd.4 φDNo
5 2 1 4 3 sltsubsub3bd φB-sD<sA-sCC-sD<sA-sB
6 5 notbid φ¬B-sD<sA-sC¬C-sD<sA-sB
7 1 3 subscld φA-sCNo
8 2 4 subscld φB-sDNo
9 slenlt A-sCNoB-sDNoA-sCsB-sD¬B-sD<sA-sC
10 7 8 9 syl2anc φA-sCsB-sD¬B-sD<sA-sC
11 1 2 subscld φA-sBNo
12 3 4 subscld φC-sDNo
13 slenlt A-sBNoC-sDNoA-sBsC-sD¬C-sD<sA-sB
14 11 12 13 syl2anc φA-sBsC-sD¬C-sD<sA-sB
15 6 10 14 3bitr4d φA-sCsB-sDA-sBsC-sD