Metamath Proof Explorer


Theorem sletrd

Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φANo
slttrd.2 φBNo
slttrd.3 φCNo
sletrd.4 φAsB
sletrd.5 φBsC
Assertion sletrd φAsC

Proof

Step Hyp Ref Expression
1 slttrd.1 φANo
2 slttrd.2 φBNo
3 slttrd.3 φCNo
4 sletrd.4 φAsB
5 sletrd.5 φBsC
6 sletr ANoBNoCNoAsBBsCAsC
7 1 2 3 6 syl3anc φAsBBsCAsC
8 4 5 7 mp2and φAsC