Metamath Proof Explorer


Theorem sletrd

Description: Surreal less than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φ A No
slttrd.2 φ B No
slttrd.3 φ C No
sletrd.4 φ A s B
sletrd.5 φ B s C
Assertion sletrd φ A s C

Proof

Step Hyp Ref Expression
1 slttrd.1 φ A No
2 slttrd.2 φ B No
3 slttrd.3 φ C No
4 sletrd.4 φ A s B
5 sletrd.5 φ B s C
6 sletr A No B No C No A s B B s C A s C
7 1 2 3 6 syl3anc φ A s B B s C A s C
8 4 5 7 mp2and φ A s C