Metamath Proof Explorer
Description: Surreal less than or equal is transitive. (Contributed by Scott
Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
slttrd.1 |
|
|
|
slttrd.2 |
|
|
|
slttrd.3 |
|
|
|
sletrd.4 |
|
|
|
sletrd.5 |
|
|
Assertion |
sletrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
slttrd.1 |
|
2 |
|
slttrd.2 |
|
3 |
|
slttrd.3 |
|
4 |
|
sletrd.4 |
|
5 |
|
sletrd.5 |
|
6 |
|
sletr |
|
7 |
1 2 3 6
|
syl3anc |
|
8 |
4 5 7
|
mp2and |
|