Metamath Proof Explorer


Theorem slmdacl

Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdacl.f F=ScalarW
slmdacl.k K=BaseF
slmdacl.p +˙=+F
Assertion slmdacl WSLModXKYKX+˙YK

Proof

Step Hyp Ref Expression
1 slmdacl.f F=ScalarW
2 slmdacl.k K=BaseF
3 slmdacl.p +˙=+F
4 1 slmdsrg WSLModFSRing
5 srgmnd FSRingFMnd
6 4 5 syl WSLModFMnd
7 2 3 mndcl FMndXKYKX+˙YK
8 6 7 syl3an1 WSLModXKYKX+˙YK