Metamath Proof Explorer


Theorem smcn

Description: Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses smcn.c C=IndMetU
smcn.j J=MetOpenC
smcn.s S=𝑠OLDU
smcn.k K=TopOpenfld
Assertion smcn UNrmCVecSK×tJCnJ

Proof

Step Hyp Ref Expression
1 smcn.c C=IndMetU
2 smcn.j J=MetOpenC
3 smcn.s S=𝑠OLDU
4 smcn.k K=TopOpenfld
5 fveq2 U=ifUNrmCVecU+×abs𝑠OLDU=𝑠OLDifUNrmCVecU+×abs
6 3 5 eqtrid U=ifUNrmCVecU+×absS=𝑠OLDifUNrmCVecU+×abs
7 fveq2 U=ifUNrmCVecU+×absIndMetU=IndMetifUNrmCVecU+×abs
8 1 7 eqtrid U=ifUNrmCVecU+×absC=IndMetifUNrmCVecU+×abs
9 8 fveq2d U=ifUNrmCVecU+×absMetOpenC=MetOpenIndMetifUNrmCVecU+×abs
10 2 9 eqtrid U=ifUNrmCVecU+×absJ=MetOpenIndMetifUNrmCVecU+×abs
11 10 oveq2d U=ifUNrmCVecU+×absK×tJ=K×tMetOpenIndMetifUNrmCVecU+×abs
12 11 10 oveq12d U=ifUNrmCVecU+×absK×tJCnJ=K×tMetOpenIndMetifUNrmCVecU+×absCnMetOpenIndMetifUNrmCVecU+×abs
13 6 12 eleq12d U=ifUNrmCVecU+×absSK×tJCnJ𝑠OLDifUNrmCVecU+×absK×tMetOpenIndMetifUNrmCVecU+×absCnMetOpenIndMetifUNrmCVecU+×abs
14 eqid IndMetifUNrmCVecU+×abs=IndMetifUNrmCVecU+×abs
15 eqid MetOpenIndMetifUNrmCVecU+×abs=MetOpenIndMetifUNrmCVecU+×abs
16 eqid 𝑠OLDifUNrmCVecU+×abs=𝑠OLDifUNrmCVecU+×abs
17 eqid BaseSetifUNrmCVecU+×abs=BaseSetifUNrmCVecU+×abs
18 eqid normCVifUNrmCVecU+×abs=normCVifUNrmCVecU+×abs
19 elimnvu ifUNrmCVecU+×absNrmCVec
20 eqid 11+normCVifUNrmCVecU+×absy+x+1r=11+normCVifUNrmCVecU+×absy+x+1r
21 14 15 16 4 17 18 19 20 smcnlem 𝑠OLDifUNrmCVecU+×absK×tMetOpenIndMetifUNrmCVecU+×absCnMetOpenIndMetifUNrmCVecU+×abs
22 13 21 dedth UNrmCVecSK×tJCnJ