Metamath Proof Explorer


Theorem smfpimltxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmpt.x xφ
smfpimltxrmpt.s φSSAlg
smfpimltxrmpt.b φxABV
smfpimltxrmpt.f φxABSMblFnS
smfpimltxrmpt.r φR*
Assertion smfpimltxrmpt φxA|B<RS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimltxrmpt.x xφ
2 smfpimltxrmpt.s φSSAlg
3 smfpimltxrmpt.b φxABV
4 smfpimltxrmpt.f φxABSMblFnS
5 smfpimltxrmpt.r φR*
6 nfcv _xA
7 1 6 2 3 4 5 smfpimltxrmptf φxA|B<RS𝑡A