Metamath Proof Explorer


Theorem sn-iotalem

Description: An unused lemma showing that many equivalences involving df-iota are potentially provable without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotalem y|x|φ=y=z|y|x|φ=y=z

Proof

Step Hyp Ref Expression
1 eqeq1 x|φ=wx|φ=zw=z
2 sneqbg wVw=zw=z
3 2 elv w=zw=z
4 equcom w=zz=w
5 3 4 bitri w=zz=w
6 1 5 bitrdi x|φ=wx|φ=zz=w
7 sneq y=zy=z
8 7 eqeq2d y=zx|φ=yx|φ=z
9 8 elabg zVzy|x|φ=yx|φ=z
10 9 elv zy|x|φ=yx|φ=z
11 velsn zwz=w
12 6 10 11 3bitr4g x|φ=wzy|x|φ=yzw
13 12 eqrdv x|φ=wy|x|φ=y=w
14 vsnid ww
15 eleq2 y|x|φ=y=wwy|x|φ=yww
16 14 15 mpbiri y|x|φ=y=wwy|x|φ=y
17 sneq y=wy=w
18 17 eqeq2d y=wx|φ=yx|φ=w
19 18 elabg wVwy|x|φ=yx|φ=w
20 19 elv wy|x|φ=yx|φ=w
21 16 20 sylib y|x|φ=y=wx|φ=w
22 13 21 impbii x|φ=wy|x|φ=y=w
23 sneq z=wz=w
24 23 eqeq2d z=wy|x|φ=y=zy|x|φ=y=w
25 24 elabg wVwz|y|x|φ=y=zy|x|φ=y=w
26 25 elv wz|y|x|φ=y=zy|x|φ=y=w
27 22 20 26 3bitr4i wy|x|φ=ywz|y|x|φ=y=z
28 27 eqriv y|x|φ=y=z|y|x|φ=y=z