Metamath Proof Explorer


Theorem sn-mulgt1d

Description: mulgt1d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-mulgt1d.a φ A
sn-mulgt1d.b φ B
sn-mulgt1d.1 φ 1 < A
sn-mulgt1d.2 φ 1 < B
Assertion sn-mulgt1d φ 1 < A B

Proof

Step Hyp Ref Expression
1 sn-mulgt1d.a φ A
2 sn-mulgt1d.b φ B
3 sn-mulgt1d.1 φ 1 < A
4 sn-mulgt1d.2 φ 1 < B
5 1red φ 1
6 1 2 remulcld φ A B
7 0red φ 0
8 sn-0lt1 0 < 1
9 8 a1i φ 0 < 1
10 7 5 1 9 3 lttrd φ 0 < A
11 2 1 10 sn-ltmulgt11d φ 1 < B A < A B
12 4 11 mpbid φ A < A B
13 5 1 6 3 12 lttrd φ 1 < A B