Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
sn-mulgt1d
Next ⟩
reneg1lt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-mulgt1d
Description:
mulgt1d
without
ax-mulcom
.
(Contributed by
SN
, 26-Jun-2024)
Ref
Expression
Hypotheses
sn-mulgt1d.a
⊢
φ
→
A
∈
ℝ
sn-mulgt1d.b
⊢
φ
→
B
∈
ℝ
sn-mulgt1d.1
⊢
φ
→
1
<
A
sn-mulgt1d.2
⊢
φ
→
1
<
B
Assertion
sn-mulgt1d
⊢
φ
→
1
<
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
sn-mulgt1d.a
⊢
φ
→
A
∈
ℝ
2
sn-mulgt1d.b
⊢
φ
→
B
∈
ℝ
3
sn-mulgt1d.1
⊢
φ
→
1
<
A
4
sn-mulgt1d.2
⊢
φ
→
1
<
B
5
1red
⊢
φ
→
1
∈
ℝ
6
1
2
remulcld
⊢
φ
→
A
⁢
B
∈
ℝ
7
0red
⊢
φ
→
0
∈
ℝ
8
sn-0lt1
⊢
0
<
1
9
8
a1i
⊢
φ
→
0
<
1
10
7
5
1
9
3
lttrd
⊢
φ
→
0
<
A
11
2
1
10
sn-ltmulgt11d
⊢
φ
→
1
<
B
↔
A
<
A
⁢
B
12
4
11
mpbid
⊢
φ
→
A
<
A
⁢
B
13
5
1
6
3
12
lttrd
⊢
φ
→
1
<
A
⁢
B